Metamath Proof Explorer


Theorem fz1isolem

Description: Lemma for fz1iso . (Contributed by Mario Carneiro, 2-Apr-2014)

Ref Expression
Hypotheses fz1iso.1 G = rec n V n + 1 1 ω
fz1iso.2 B = < -1 A + 1
fz1iso.3 C = ω G -1 A + 1
fz1iso.4 O = OrdIso R A
Assertion fz1isolem R Or A A Fin f f Isom < , R 1 A A

Proof

Step Hyp Ref Expression
1 fz1iso.1 G = rec n V n + 1 1 ω
2 fz1iso.2 B = < -1 A + 1
3 fz1iso.3 C = ω G -1 A + 1
4 fz1iso.4 O = OrdIso R A
5 hashcl A Fin A 0
6 5 adantl R Or A A Fin A 0
7 nnuz = 1
8 1z 1
9 8 1 om2uzisoi G Isom E , < ω 1
10 isoeq5 = 1 G Isom E , < ω G Isom E , < ω 1
11 9 10 mpbiri = 1 G Isom E , < ω
12 7 11 ax-mp G Isom E , < ω
13 isocnv G Isom E , < ω G -1 Isom < , E ω
14 12 13 ax-mp G -1 Isom < , E ω
15 nn0p1nn A 0 A + 1
16 fvex G -1 A + 1 V
17 16 epini E -1 G -1 A + 1 = G -1 A + 1
18 17 ineq2i ω E -1 G -1 A + 1 = ω G -1 A + 1
19 3 18 eqtr4i C = ω E -1 G -1 A + 1
20 2 19 isoini2 G -1 Isom < , E ω A + 1 G -1 B Isom < , E B C
21 14 15 20 sylancr A 0 G -1 B Isom < , E B C
22 6 21 syl R Or A A Fin G -1 B Isom < , E B C
23 nnz f f
24 6 nn0zd R Or A A Fin A
25 eluz f A A f f A
26 23 24 25 syl2anr R Or A A Fin f A f f A
27 zleltp1 f A f A f < A + 1
28 23 24 27 syl2anr R Or A A Fin f f A f < A + 1
29 ovex A + 1 V
30 vex f V
31 30 eliniseg A + 1 V f < -1 A + 1 f < A + 1
32 29 31 ax-mp f < -1 A + 1 f < A + 1
33 28 32 syl6bbr R Or A A Fin f f A f < -1 A + 1
34 26 33 bitr2d R Or A A Fin f f < -1 A + 1 A f
35 34 pm5.32da R Or A A Fin f f < -1 A + 1 f A f
36 2 elin2 f B f f < -1 A + 1
37 elfzuzb f 1 A f 1 A f
38 elnnuz f f 1
39 38 anbi1i f A f f 1 A f
40 37 39 bitr4i f 1 A f A f
41 35 36 40 3bitr4g R Or A A Fin f B f 1 A
42 41 eqrdv R Or A A Fin B = 1 A
43 isoeq4 B = 1 A G -1 B Isom < , E B C G -1 B Isom < , E 1 A C
44 42 43 syl R Or A A Fin G -1 B Isom < , E B C G -1 B Isom < , E 1 A C
45 22 44 mpbid R Or A A Fin G -1 B Isom < , E 1 A C
46 4 oion A Fin dom O On
47 46 adantl R Or A A Fin dom O On
48 simpr R Or A A Fin A Fin
49 wofi R Or A A Fin R We A
50 4 oien A Fin R We A dom O A
51 48 49 50 syl2anc R Or A A Fin dom O A
52 enfii A Fin dom O A dom O Fin
53 48 51 52 syl2anc R Or A A Fin dom O Fin
54 47 53 elind R Or A A Fin dom O On Fin
55 onfin2 ω = On Fin
56 54 55 eleqtrrdi R Or A A Fin dom O ω
57 eqid rec n V n + 1 0 ω = rec n V n + 1 0 ω
58 0z 0
59 1 57 8 58 uzrdgxfr dom O ω G dom O = rec n V n + 1 0 ω dom O + 1 - 0
60 1m0e1 1 0 = 1
61 60 oveq2i rec n V n + 1 0 ω dom O + 1 - 0 = rec n V n + 1 0 ω dom O + 1
62 59 61 syl6eq dom O ω G dom O = rec n V n + 1 0 ω dom O + 1
63 56 62 syl R Or A A Fin G dom O = rec n V n + 1 0 ω dom O + 1
64 51 ensymd R Or A A Fin A dom O
65 cardennn A dom O dom O ω card A = dom O
66 64 56 65 syl2anc R Or A A Fin card A = dom O
67 66 fveq2d R Or A A Fin rec n V n + 1 0 ω card A = rec n V n + 1 0 ω dom O
68 57 hashgval A Fin rec n V n + 1 0 ω card A = A
69 68 adantl R Or A A Fin rec n V n + 1 0 ω card A = A
70 67 69 eqtr3d R Or A A Fin rec n V n + 1 0 ω dom O = A
71 70 oveq1d R Or A A Fin rec n V n + 1 0 ω dom O + 1 = A + 1
72 63 71 eqtrd R Or A A Fin G dom O = A + 1
73 72 fveq2d R Or A A Fin G -1 G dom O = G -1 A + 1
74 isof1o G Isom E , < ω G : ω 1-1 onto
75 12 74 ax-mp G : ω 1-1 onto
76 f1ocnvfv1 G : ω 1-1 onto dom O ω G -1 G dom O = dom O
77 75 56 76 sylancr R Or A A Fin G -1 G dom O = dom O
78 73 77 eqtr3d R Or A A Fin G -1 A + 1 = dom O
79 78 ineq2d R Or A A Fin ω G -1 A + 1 = ω dom O
80 ordom Ord ω
81 ordelss Ord ω dom O ω dom O ω
82 80 56 81 sylancr R Or A A Fin dom O ω
83 sseqin2 dom O ω ω dom O = dom O
84 82 83 sylib R Or A A Fin ω dom O = dom O
85 79 84 eqtrd R Or A A Fin ω G -1 A + 1 = dom O
86 3 85 syl5eq R Or A A Fin C = dom O
87 isoeq5 C = dom O G -1 B Isom < , E 1 A C G -1 B Isom < , E 1 A dom O
88 86 87 syl R Or A A Fin G -1 B Isom < , E 1 A C G -1 B Isom < , E 1 A dom O
89 45 88 mpbid R Or A A Fin G -1 B Isom < , E 1 A dom O
90 4 oiiso A Fin R We A O Isom E , R dom O A
91 48 49 90 syl2anc R Or A A Fin O Isom E , R dom O A
92 isotr G -1 B Isom < , E 1 A dom O O Isom E , R dom O A O G -1 B Isom < , R 1 A A
93 89 91 92 syl2anc R Or A A Fin O G -1 B Isom < , R 1 A A
94 isof1o O G -1 B Isom < , R 1 A A O G -1 B : 1 A 1-1 onto A
95 f1of O G -1 B : 1 A 1-1 onto A O G -1 B : 1 A A
96 93 94 95 3syl R Or A A Fin O G -1 B : 1 A A
97 fzfid R Or A A Fin 1 A Fin
98 fex O G -1 B : 1 A A 1 A Fin O G -1 B V
99 96 97 98 syl2anc R Or A A Fin O G -1 B V
100 isoeq1 f = O G -1 B f Isom < , R 1 A A O G -1 B Isom < , R 1 A A
101 99 93 100 spcedv R Or A A Fin f f Isom < , R 1 A A