Metamath Proof Explorer


Theorem isoeq5

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq5 B=CHIsomR,SABHIsomR,SAC

Proof

Step Hyp Ref Expression
1 f1oeq3 B=CH:A1-1 ontoBH:A1-1 ontoC
2 1 anbi1d B=CH:A1-1 ontoBxAyAxRyHxSHyH:A1-1 ontoCxAyAxRyHxSHy
3 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
4 df-isom HIsomR,SACH:A1-1 ontoCxAyAxRyHxSHy
5 2 3 4 3bitr4g B=CHIsomR,SABHIsomR,SAC