| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
| 2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
| 3 |
1 2
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
| 4 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
| 5 |
1 2
|
om2uzlt2i |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 ∈ 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ) ) |
| 6 |
4 5
|
bitrid |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 E 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ) ) |
| 7 |
6
|
rgen2 |
⊢ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( 𝑦 E 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ) |
| 8 |
|
df-isom |
⊢ ( 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) ↔ ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( 𝑦 E 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 9 |
3 7 8
|
mpbir2an |
⊢ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 𝐶 ) ) |