| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							om2uz.1 | 
							⊢ 𝐶  ∈  ℤ  | 
						
						
							| 2 | 
							
								
							 | 
							om2uz.2 | 
							⊢ 𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  𝐶 )  ↾  ω )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							om2uzlti | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  →  ( 𝐺 ‘ 𝐴 )  <  ( 𝐺 ‘ 𝐵 ) ) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							om2uzlti | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω )  →  ( 𝐵  ∈  𝐴  →  ( 𝐺 ‘ 𝐵 )  <  ( 𝐺 ‘ 𝐴 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐵  =  𝐴  →  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω )  →  ( 𝐵  =  𝐴  →  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							orim12d | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  →  ( ( 𝐺 ‘ 𝐵 )  <  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  →  ( ( 𝐺 ‘ 𝐵 )  <  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nnon | 
							⊢ ( 𝐵  ∈  ω  →  𝐵  ∈  On )  | 
						
						
							| 10 | 
							
								
							 | 
							nnon | 
							⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On )  | 
						
						
							| 11 | 
							
								
							 | 
							onsseleq | 
							⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ontri1 | 
							⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							bitr3d | 
							⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  ↔  ¬  𝐴  ∈  𝐵 ) )  | 
						
						
							| 14 | 
							
								9 10 13
							 | 
							syl2anr | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  ↔  ¬  𝐴  ∈  𝐵 ) )  | 
						
						
							| 15 | 
							
								1 2
							 | 
							om2uzuzi | 
							⊢ ( 𝐵  ∈  ω  →  ( 𝐺 ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 𝐶 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eluzelre | 
							⊢ ( ( 𝐺 ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 𝐶 )  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( 𝐵  ∈  ω  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ )  | 
						
						
							| 18 | 
							
								1 2
							 | 
							om2uzuzi | 
							⊢ ( 𝐴  ∈  ω  →  ( 𝐺 ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 𝐶 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eluzelre | 
							⊢ ( ( 𝐺 ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 𝐶 )  →  ( 𝐺 ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ω  →  ( 𝐺 ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								
							 | 
							leloe | 
							⊢ ( ( ( 𝐺 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝐺 ‘ 𝐴 )  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐴 )  ↔  ( ( 𝐺 ‘ 𝐵 )  <  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							lenlt | 
							⊢ ( ( ( 𝐺 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝐺 ‘ 𝐴 )  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐴 )  ↔  ¬  ( 𝐺 ‘ 𝐴 )  <  ( 𝐺 ‘ 𝐵 ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							bitr3d | 
							⊢ ( ( ( 𝐺 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝐺 ‘ 𝐴 )  ∈  ℝ )  →  ( ( ( 𝐺 ‘ 𝐵 )  <  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) )  ↔  ¬  ( 𝐺 ‘ 𝐴 )  <  ( 𝐺 ‘ 𝐵 ) ) )  | 
						
						
							| 24 | 
							
								17 20 23
							 | 
							syl2anr | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ( ( 𝐺 ‘ 𝐵 )  <  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) )  ↔  ¬  ( 𝐺 ‘ 𝐴 )  <  ( 𝐺 ‘ 𝐵 ) ) )  | 
						
						
							| 25 | 
							
								8 14 24
							 | 
							3imtr3d | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ¬  𝐴  ∈  𝐵  →  ¬  ( 𝐺 ‘ 𝐴 )  <  ( 𝐺 ‘ 𝐵 ) ) )  | 
						
						
							| 26 | 
							
								3 25
							 | 
							impcon4bid | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐺 ‘ 𝐴 )  <  ( 𝐺 ‘ 𝐵 ) ) )  |