Metamath Proof Explorer


Theorem om2uzlt2i

Description: The mapping G (see om2uz0i ) preserves order. (Contributed by NM, 4-May-2005) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
Assertion om2uzlt2i A ω B ω A B G A < G B

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 1 2 om2uzlti A ω B ω A B G A < G B
4 1 2 om2uzlti B ω A ω B A G B < G A
5 fveq2 B = A G B = G A
6 5 a1i B ω A ω B = A G B = G A
7 4 6 orim12d B ω A ω B A B = A G B < G A G B = G A
8 7 ancoms A ω B ω B A B = A G B < G A G B = G A
9 nnon B ω B On
10 nnon A ω A On
11 onsseleq B On A On B A B A B = A
12 ontri1 B On A On B A ¬ A B
13 11 12 bitr3d B On A On B A B = A ¬ A B
14 9 10 13 syl2anr A ω B ω B A B = A ¬ A B
15 1 2 om2uzuzi B ω G B C
16 eluzelre G B C G B
17 15 16 syl B ω G B
18 1 2 om2uzuzi A ω G A C
19 eluzelre G A C G A
20 18 19 syl A ω G A
21 leloe G B G A G B G A G B < G A G B = G A
22 lenlt G B G A G B G A ¬ G A < G B
23 21 22 bitr3d G B G A G B < G A G B = G A ¬ G A < G B
24 17 20 23 syl2anr A ω B ω G B < G A G B = G A ¬ G A < G B
25 8 14 24 3imtr3d A ω B ω ¬ A B ¬ G A < G B
26 3 25 impcon4bid A ω B ω A B G A < G B