| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							om2uz.1 | 
							 |-  C e. ZZ  | 
						
						
							| 2 | 
							
								
							 | 
							om2uz.2 | 
							 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							om2uzlti | 
							 |-  ( ( A e. _om /\ B e. _om ) -> ( A e. B -> ( G ` A ) < ( G ` B ) ) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							om2uzlti | 
							 |-  ( ( B e. _om /\ A e. _om ) -> ( B e. A -> ( G ` B ) < ( G ` A ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							 |-  ( B = A -> ( G ` B ) = ( G ` A ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( ( B e. _om /\ A e. _om ) -> ( B = A -> ( G ` B ) = ( G ` A ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							orim12d | 
							 |-  ( ( B e. _om /\ A e. _om ) -> ( ( B e. A \/ B = A ) -> ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ancoms | 
							 |-  ( ( A e. _om /\ B e. _om ) -> ( ( B e. A \/ B = A ) -> ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nnon | 
							 |-  ( B e. _om -> B e. On )  | 
						
						
							| 10 | 
							
								
							 | 
							nnon | 
							 |-  ( A e. _om -> A e. On )  | 
						
						
							| 11 | 
							
								
							 | 
							onsseleq | 
							 |-  ( ( B e. On /\ A e. On ) -> ( B C_ A <-> ( B e. A \/ B = A ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ontri1 | 
							 |-  ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							bitr3d | 
							 |-  ( ( B e. On /\ A e. On ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) )  | 
						
						
							| 14 | 
							
								9 10 13
							 | 
							syl2anr | 
							 |-  ( ( A e. _om /\ B e. _om ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) )  | 
						
						
							| 15 | 
							
								1 2
							 | 
							om2uzuzi | 
							 |-  ( B e. _om -> ( G ` B ) e. ( ZZ>= ` C ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eluzelre | 
							 |-  ( ( G ` B ) e. ( ZZ>= ` C ) -> ( G ` B ) e. RR )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( B e. _om -> ( G ` B ) e. RR )  | 
						
						
							| 18 | 
							
								1 2
							 | 
							om2uzuzi | 
							 |-  ( A e. _om -> ( G ` A ) e. ( ZZ>= ` C ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eluzelre | 
							 |-  ( ( G ` A ) e. ( ZZ>= ` C ) -> ( G ` A ) e. RR )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( A e. _om -> ( G ` A ) e. RR )  | 
						
						
							| 21 | 
							
								
							 | 
							leloe | 
							 |-  ( ( ( G ` B ) e. RR /\ ( G ` A ) e. RR ) -> ( ( G ` B ) <_ ( G ` A ) <-> ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							lenlt | 
							 |-  ( ( ( G ` B ) e. RR /\ ( G ` A ) e. RR ) -> ( ( G ` B ) <_ ( G ` A ) <-> -. ( G ` A ) < ( G ` B ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							bitr3d | 
							 |-  ( ( ( G ` B ) e. RR /\ ( G ` A ) e. RR ) -> ( ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) <-> -. ( G ` A ) < ( G ` B ) ) )  | 
						
						
							| 24 | 
							
								17 20 23
							 | 
							syl2anr | 
							 |-  ( ( A e. _om /\ B e. _om ) -> ( ( ( G ` B ) < ( G ` A ) \/ ( G ` B ) = ( G ` A ) ) <-> -. ( G ` A ) < ( G ` B ) ) )  | 
						
						
							| 25 | 
							
								8 14 24
							 | 
							3imtr3d | 
							 |-  ( ( A e. _om /\ B e. _om ) -> ( -. A e. B -> -. ( G ` A ) < ( G ` B ) ) )  | 
						
						
							| 26 | 
							
								3 25
							 | 
							impcon4bid | 
							 |-  ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> ( G ` A ) < ( G ` B ) ) )  |