Metamath Proof Explorer


Theorem lelttrdi

Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018)

Ref Expression
Hypotheses lelttrdi.r ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) )
lelttrdi.l ( 𝜑𝐵𝐶 )
Assertion lelttrdi ( 𝜑 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 lelttrdi.r ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) )
2 lelttrdi.l ( 𝜑𝐵𝐶 )
3 1 simp1d ( 𝜑𝐴 ∈ ℝ )
4 3 adantr ( ( 𝜑𝐴 < 𝐵 ) → 𝐴 ∈ ℝ )
5 1 simp2d ( 𝜑𝐵 ∈ ℝ )
6 5 adantr ( ( 𝜑𝐴 < 𝐵 ) → 𝐵 ∈ ℝ )
7 1 simp3d ( 𝜑𝐶 ∈ ℝ )
8 7 adantr ( ( 𝜑𝐴 < 𝐵 ) → 𝐶 ∈ ℝ )
9 simpr ( ( 𝜑𝐴 < 𝐵 ) → 𝐴 < 𝐵 )
10 2 adantr ( ( 𝜑𝐴 < 𝐵 ) → 𝐵𝐶 )
11 4 6 8 9 10 ltletrd ( ( 𝜑𝐴 < 𝐵 ) → 𝐴 < 𝐶 )
12 11 ex ( 𝜑 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) )