| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
lemul1ad.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
ltmul12ad.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
lemul12bd.4 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 6 |
|
lemul12bd.5 |
⊢ ( 𝜑 → 0 ≤ 𝐷 ) |
| 7 |
|
lemul12bd.6 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 8 |
|
lemul12bd.7 |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 9 |
1 5
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 10 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) |
| 11 |
|
lemul12b |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| 12 |
9 2 3 10 11
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| 13 |
7 8 12
|
mp2and |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) |