Description: 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lenlteq.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| lenlteq.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lenlteq.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| lenlteq.4 | ⊢ ( 𝜑 → ¬ 𝐴 < 𝐵 ) | ||
| Assertion | lenlteq | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlteq.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | lenlteq.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lenlteq.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | lenlteq.4 | ⊢ ( 𝜑 → ¬ 𝐴 < 𝐵 ) | |
| 5 | 3 4 | jca | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) |
| 6 | eqlelt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |
| 8 | 5 7 | mpbird | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |