Description: 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lenlteq.1 | |- ( ph -> A e. RR ) |
|
| lenlteq.2 | |- ( ph -> B e. RR ) |
||
| lenlteq.3 | |- ( ph -> A <_ B ) |
||
| lenlteq.4 | |- ( ph -> -. A < B ) |
||
| Assertion | lenlteq | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlteq.1 | |- ( ph -> A e. RR ) |
|
| 2 | lenlteq.2 | |- ( ph -> B e. RR ) |
|
| 3 | lenlteq.3 | |- ( ph -> A <_ B ) |
|
| 4 | lenlteq.4 | |- ( ph -> -. A < B ) |
|
| 5 | 3 4 | jca | |- ( ph -> ( A <_ B /\ -. A < B ) ) |
| 6 | eqlelt | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ -. A < B ) ) ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( A = B <-> ( A <_ B /\ -. A < B ) ) ) |
| 8 | 5 7 | mpbird | |- ( ph -> A = B ) |