| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 2 |  | lgsval2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  2  ∈  ℙ )  →  ( 𝐴  /L  2 )  =  if ( 2  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 2  −  1 )  /  2 ) )  +  1 )  mod  2 )  −  1 ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  /L  2 )  =  if ( 2  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 2  −  1 )  /  2 ) )  +  1 )  mod  2 )  −  1 ) ) ) | 
						
							| 4 |  | eqid | ⊢ 2  =  2 | 
						
							| 5 | 4 | iftruei | ⊢ if ( 2  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 2  −  1 )  /  2 ) )  +  1 )  mod  2 )  −  1 ) )  =  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 6 | 3 5 | eqtrdi | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  /L  2 )  =  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ) |