Description: The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lgscl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ⊆ ℤ | |
| 2 | eqid | ⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } | |
| 3 | 2 | lgscl2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ) |
| 4 | 1 3 | sselid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |