Metamath Proof Explorer


Theorem limsuc2

Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Assertion limsuc2 ( ( Ord 𝐴𝐴 = 𝐴 ) → ( 𝐵𝐴 ↔ suc 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordunisuc2 ( Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ∀ 𝑥𝐴 suc 𝑥𝐴 ) )
2 1 biimpa ( ( Ord 𝐴𝐴 = 𝐴 ) → ∀ 𝑥𝐴 suc 𝑥𝐴 )
3 suceq ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 )
4 3 eleq1d ( 𝑥 = 𝐵 → ( suc 𝑥𝐴 ↔ suc 𝐵𝐴 ) )
5 4 rspccva ( ( ∀ 𝑥𝐴 suc 𝑥𝐴𝐵𝐴 ) → suc 𝐵𝐴 )
6 2 5 sylan ( ( ( Ord 𝐴𝐴 = 𝐴 ) ∧ 𝐵𝐴 ) → suc 𝐵𝐴 )
7 6 ex ( ( Ord 𝐴𝐴 = 𝐴 ) → ( 𝐵𝐴 → suc 𝐵𝐴 ) )
8 ordtr ( Ord 𝐴 → Tr 𝐴 )
9 trsuc ( ( Tr 𝐴 ∧ suc 𝐵𝐴 ) → 𝐵𝐴 )
10 9 ex ( Tr 𝐴 → ( suc 𝐵𝐴𝐵𝐴 ) )
11 8 10 syl ( Ord 𝐴 → ( suc 𝐵𝐴𝐵𝐴 ) )
12 11 adantr ( ( Ord 𝐴𝐴 = 𝐴 ) → ( suc 𝐵𝐴𝐵𝐴 ) )
13 7 12 impbid ( ( Ord 𝐴𝐴 = 𝐴 ) → ( 𝐵𝐴 ↔ suc 𝐵𝐴 ) )