Step |
Hyp |
Ref |
Expression |
1 |
|
ordunisuc2 |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
2 |
1
|
biimpa |
⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) |
3 |
|
suceq |
⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |
5 |
4
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ∈ 𝐴 ) |
6 |
2 5
|
sylan |
⊢ ( ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ∈ 𝐴 ) |
7 |
6
|
ex |
⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴 ) ) |
8 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
9 |
|
trsuc |
⊢ ( ( Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
10 |
9
|
ex |
⊢ ( Tr 𝐴 → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
11 |
8 10
|
syl |
⊢ ( Ord 𝐴 → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
12 |
11
|
adantr |
⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
13 |
7 12
|
impbid |
⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |