Metamath Proof Explorer


Theorem limsupval

Description: The superior limit of an infinite sequence F of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of F . Definition 12-4.1 of Gleason p. 175. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2014)

Ref Expression
Hypothesis limsupval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
Assertion limsupval ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 limsupval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
2 elex ( 𝐹𝑉𝐹 ∈ V )
3 imaeq1 ( 𝑥 = 𝐹 → ( 𝑥 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
4 3 ineq1d ( 𝑥 = 𝐹 → ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
5 4 supeq1d ( 𝑥 = 𝐹 → sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
6 5 mpteq2dv ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
7 6 1 eqtr4di ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 )
8 7 rneqd ( 𝑥 = 𝐹 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 )
9 8 infeq1d ( 𝑥 = 𝐹 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran 𝐺 , ℝ* , < ) )
10 df-limsup lim sup = ( 𝑥 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
11 xrltso < Or ℝ*
12 11 infex inf ( ran 𝐺 , ℝ* , < ) ∈ V
13 9 10 12 fvmpt ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )
14 2 13 syl ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )