Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
2 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
3 |
|
imaeq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
4 |
3
|
ineq1d |
⊢ ( 𝑥 = 𝐹 → ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
5 |
4
|
supeq1d |
⊢ ( 𝑥 = 𝐹 → sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 ) |
8 |
7
|
rneqd |
⊢ ( 𝑥 = 𝐹 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 ) |
9 |
8
|
infeq1d |
⊢ ( 𝑥 = 𝐹 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran 𝐺 , ℝ* , < ) ) |
10 |
|
df-limsup |
⊢ lim sup = ( 𝑥 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
11 |
|
xrltso |
⊢ < Or ℝ* |
12 |
11
|
infex |
⊢ inf ( ran 𝐺 , ℝ* , < ) ∈ V |
13 |
9 10 12
|
fvmpt |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
14 |
2 13
|
syl |
⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |