| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hilbert1.1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ∃ 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |
| 2 |
|
simpr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑃 ≠ 𝑄 ) |
| 3 |
|
hilbert1.2 |
⊢ ( 𝑃 ≠ 𝑄 → ∃* 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ∃* 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |
| 5 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ↔ ( ∃ 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ∃* 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) ) |
| 6 |
1 4 5
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ∃! 𝑥 ∈ LinesEE ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |