| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hilbert1.1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ∃ 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) | 
						
							| 2 |  | simpr3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 3 |  | hilbert1.2 | ⊢ ( 𝑃  ≠  𝑄  →  ∃* 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ∃* 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) | 
						
							| 5 |  | reu5 | ⊢ ( ∃! 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ↔  ( ∃ 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ∃* 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) ) | 
						
							| 6 | 1 4 5 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ∃! 𝑥  ∈  LinesEE ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) |