Metamath Proof Explorer


Theorem linethrueu

Description: There is a unique line going through any two distinct points. Theorem 6.19 of Schwabhauser p. 46. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linethrueu ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ∃! 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) )

Proof

Step Hyp Ref Expression
1 hilbert1.1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ∃ 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) )
2 simpr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → 𝑃𝑄 )
3 hilbert1.2 ( 𝑃𝑄 → ∃* 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) )
4 2 3 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ∃* 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) )
5 reu5 ( ∃! 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) ↔ ( ∃ 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) ∧ ∃* 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) ) )
6 1 4 5 sylanbrc ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ∃! 𝑥 ∈ LinesEE ( 𝑃𝑥𝑄𝑥 ) )