| Step | Hyp | Ref | Expression | 
						
							| 1 |  | an4 | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 2 |  | linethru | ⊢ ( ( 𝐴  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  𝐴  =  ( 𝑥 Line 𝑦 ) ) | 
						
							| 3 | 2 | 3expa | ⊢ ( ( ( 𝐴  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  𝑥  ≠  𝑦 )  →  𝐴  =  ( 𝑥 Line 𝑦 ) ) | 
						
							| 4 |  | linethru | ⊢ ( ( 𝐵  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑥  ≠  𝑦 )  →  𝐵  =  ( 𝑥 Line 𝑦 ) ) | 
						
							| 5 | 4 | 3expa | ⊢ ( ( ( 𝐵  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑥  ≠  𝑦 )  →  𝐵  =  ( 𝑥 Line 𝑦 ) ) | 
						
							| 6 |  | eqtr3 | ⊢ ( ( 𝐴  =  ( 𝑥 Line 𝑦 )  ∧  𝐵  =  ( 𝑥 Line 𝑦 ) )  →  𝐴  =  𝐵 ) | 
						
							| 7 | 3 5 6 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  𝑥  ≠  𝑦 )  ∧  ( ( 𝐵  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑥  ≠  𝑦 ) )  →  𝐴  =  𝐵 ) | 
						
							| 8 | 7 | anandirs | ⊢ ( ( ( ( 𝐴  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐵  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  ∧  𝑥  ≠  𝑦 )  →  𝐴  =  𝐵 ) | 
						
							| 9 | 8 | ex | ⊢ ( ( ( 𝐴  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐵  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝑥  ≠  𝑦  →  𝐴  =  𝐵 ) ) | 
						
							| 10 | 9 | necon1d | ⊢ ( ( ( 𝐴  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( 𝐵  ∈  LinesEE  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝐴  ≠  𝐵  →  𝑥  =  𝑦 ) ) | 
						
							| 11 | 10 | an4s | ⊢ ( ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝐴  ≠  𝐵  →  𝑥  =  𝑦 ) ) | 
						
							| 12 | 1 11 | sylan2b | ⊢ ( ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝐴  ≠  𝐵  →  𝑥  =  𝑦 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐴  ≠  𝐵  →  𝑥  =  𝑦 ) ) ) | 
						
							| 14 | 13 | com23 | ⊢ ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE )  →  ( 𝐴  ≠  𝐵  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 15 | 14 | 3impia | ⊢ ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 16 | 15 | alrimivv | ⊢ ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE  ∧  𝐴  ≠  𝐵 )  →  ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 17 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 18 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 19 | 17 18 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 20 | 19 | mo4 | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 21 | 16 20 | sylibr | ⊢ ( ( 𝐴  ∈  LinesEE  ∧  𝐵  ∈  LinesEE  ∧  𝐴  ≠  𝐵 )  →  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) |