Metamath Proof Explorer


Theorem lineintmo

Description: Two distinct lines intersect in at most one point. Theorem 6.21 of Schwabhauser p. 46. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion lineintmo ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵 ) → ∃* 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 an4 ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) ↔ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) )
2 linethru ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ 𝑥𝑦 ) → 𝐴 = ( 𝑥 Line 𝑦 ) )
3 2 3expa ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → 𝐴 = ( 𝑥 Line 𝑦 ) )
4 linethru ( ( 𝐵 ∈ LinesEE ∧ ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥𝑦 ) → 𝐵 = ( 𝑥 Line 𝑦 ) )
5 4 3expa ( ( ( 𝐵 ∈ LinesEE ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑥𝑦 ) → 𝐵 = ( 𝑥 Line 𝑦 ) )
6 eqtr3 ( ( 𝐴 = ( 𝑥 Line 𝑦 ) ∧ 𝐵 = ( 𝑥 Line 𝑦 ) ) → 𝐴 = 𝐵 )
7 3 5 6 syl2an ( ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) ∧ ( ( 𝐵 ∈ LinesEE ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑥𝑦 ) ) → 𝐴 = 𝐵 )
8 7 anandirs ( ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( 𝐵 ∈ LinesEE ∧ ( 𝑥𝐵𝑦𝐵 ) ) ) ∧ 𝑥𝑦 ) → 𝐴 = 𝐵 )
9 8 ex ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( 𝐵 ∈ LinesEE ∧ ( 𝑥𝐵𝑦𝐵 ) ) ) → ( 𝑥𝑦𝐴 = 𝐵 ) )
10 9 necon1d ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( 𝐵 ∈ LinesEE ∧ ( 𝑥𝐵𝑦𝐵 ) ) ) → ( 𝐴𝐵𝑥 = 𝑦 ) )
11 10 an4s ( ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) ∧ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ) → ( 𝐴𝐵𝑥 = 𝑦 ) )
12 1 11 sylan2b ( ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) ∧ ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) ) → ( 𝐴𝐵𝑥 = 𝑦 ) )
13 12 ex ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) → ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) → ( 𝐴𝐵𝑥 = 𝑦 ) ) )
14 13 com23 ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) → ( 𝐴𝐵 → ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) → 𝑥 = 𝑦 ) ) )
15 14 3impia ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵 ) → ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) → 𝑥 = 𝑦 ) )
16 15 alrimivv ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵 ) → ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) → 𝑥 = 𝑦 ) )
17 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
18 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐵𝑦𝐵 ) )
19 17 18 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑦𝐴𝑦𝐵 ) ) )
20 19 mo4 ( ∃* 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑦𝐴𝑦𝐵 ) ) → 𝑥 = 𝑦 ) )
21 16 20 sylibr ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵 ) → ∃* 𝑥 ( 𝑥𝐴𝑥𝐵 ) )