| Step |
Hyp |
Ref |
Expression |
| 1 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 2 |
|
linethru |
⊢ ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 = ( 𝑥 Line 𝑦 ) ) |
| 3 |
2
|
3expa |
⊢ ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 = ( 𝑥 Line 𝑦 ) ) |
| 4 |
|
linethru |
⊢ ( ( 𝐵 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ≠ 𝑦 ) → 𝐵 = ( 𝑥 Line 𝑦 ) ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝐵 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐵 = ( 𝑥 Line 𝑦 ) ) |
| 6 |
|
eqtr3 |
⊢ ( ( 𝐴 = ( 𝑥 Line 𝑦 ) ∧ 𝐵 = ( 𝑥 Line 𝑦 ) ) → 𝐴 = 𝐵 ) |
| 7 |
3 5 6
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( ( 𝐵 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐴 = 𝐵 ) |
| 8 |
7
|
anandirs |
⊢ ( ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐵 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝐴 = 𝐵 ) |
| 9 |
8
|
ex |
⊢ ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐵 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝑥 ≠ 𝑦 → 𝐴 = 𝐵 ) ) |
| 10 |
9
|
necon1d |
⊢ ( ( ( 𝐴 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐵 ∈ LinesEE ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝐴 ≠ 𝐵 → 𝑥 = 𝑦 ) ) |
| 11 |
10
|
an4s |
⊢ ( ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝐴 ≠ 𝐵 → 𝑥 = 𝑦 ) ) |
| 12 |
1 11
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝐴 ≠ 𝐵 → 𝑥 = 𝑦 ) ) |
| 13 |
12
|
ex |
⊢ ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ≠ 𝐵 → 𝑥 = 𝑦 ) ) ) |
| 14 |
13
|
com23 |
⊢ ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ) → ( 𝐴 ≠ 𝐵 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) ) |
| 15 |
14
|
3impia |
⊢ ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) |
| 16 |
15
|
alrimivv |
⊢ ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) |
| 17 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 18 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 19 |
17 18
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 20 |
19
|
mo4 |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = 𝑦 ) ) |
| 21 |
16 20
|
sylibr |
⊢ ( ( 𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |