Description: Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmiclcl | ⊢ ( 𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic | ⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝑅 LMIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 LMIso 𝑆 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 LMIso 𝑆 ) ) |
| 4 | lmimlmhm | ⊢ ( 𝑓 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑓 ∈ ( 𝑅 LMHom 𝑆 ) ) | |
| 5 | lmhmlmod1 | ⊢ ( 𝑓 ∈ ( 𝑅 LMHom 𝑆 ) → 𝑅 ∈ LMod ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑅 ∈ LMod ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑅 ∈ LMod ) |
| 8 | 3 7 | sylbi | ⊢ ( 𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod ) |