Database COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED) Operators on complex vector spaces Definitions and basic properties lnocni  
				
		 
		
			
		 
		Description:   If a linear operator is continuous at any point, it is continuous
         everywhere.  Theorem 2.7-9(b) of Kreyszig  p. 97.  (Contributed by NM , 18-Dec-2007)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						blocni.8 ⊢  𝐶   =  ( IndMet ‘ 𝑈  )  
					
						blocni.d ⊢  𝐷   =  ( IndMet ‘ 𝑊  )  
					
						blocni.j ⊢  𝐽   =  ( MetOpen ‘ 𝐶  )  
					
						blocni.k ⊢  𝐾   =  ( MetOpen ‘ 𝐷  )  
					
						blocni.4 ⊢  𝐿   =  ( 𝑈   LnOp  𝑊  )  
					
						blocni.5 ⊢  𝐵   =  ( 𝑈   BLnOp  𝑊  )  
					
						blocni.u ⊢  𝑈   ∈  NrmCVec  
					
						blocni.w ⊢  𝑊   ∈  NrmCVec  
					
						blocni.l ⊢  𝑇   ∈  𝐿   
					
						lnocni.1 ⊢  𝑋   =  ( BaseSet ‘ 𝑈  )  
				
					Assertion 
					lnocni ⊢   ( ( 𝑃   ∈  𝑋   ∧  𝑇   ∈  ( ( 𝐽   CnP  𝐾  ) ‘ 𝑃  ) )  →  𝑇   ∈  ( 𝐽   Cn  𝐾  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							blocni.8 ⊢  𝐶   =  ( IndMet ‘ 𝑈  )  
						
							2 
								
							 
							blocni.d ⊢  𝐷   =  ( IndMet ‘ 𝑊  )  
						
							3 
								
							 
							blocni.j ⊢  𝐽   =  ( MetOpen ‘ 𝐶  )  
						
							4 
								
							 
							blocni.k ⊢  𝐾   =  ( MetOpen ‘ 𝐷  )  
						
							5 
								
							 
							blocni.4 ⊢  𝐿   =  ( 𝑈   LnOp  𝑊  )  
						
							6 
								
							 
							blocni.5 ⊢  𝐵   =  ( 𝑈   BLnOp  𝑊  )  
						
							7 
								
							 
							blocni.u ⊢  𝑈   ∈  NrmCVec  
						
							8 
								
							 
							blocni.w ⊢  𝑊   ∈  NrmCVec  
						
							9 
								
							 
							blocni.l ⊢  𝑇   ∈  𝐿   
						
							10 
								
							 
							lnocni.1 ⊢  𝑋   =  ( BaseSet ‘ 𝑈  )  
						
							11 
								1  2  3  4  5  6  7  8  9  10 
							 
							blocnilem ⊢  ( ( 𝑃   ∈  𝑋   ∧  𝑇   ∈  ( ( 𝐽   CnP  𝐾  ) ‘ 𝑃  ) )  →  𝑇   ∈  𝐵  )  
						
							12 
								1  2  3  4  5  6  7  8  9 
							 
							blocni ⊢  ( 𝑇   ∈  ( 𝐽   Cn  𝐾  )  ↔  𝑇   ∈  𝐵  )  
						
							13 
								11  12 
							 
							sylibr ⊢  ( ( 𝑃   ∈  𝑋   ∧  𝑇   ∈  ( ( 𝐽   CnP  𝐾  ) ‘ 𝑃  ) )  →  𝑇   ∈  ( 𝐽   Cn  𝐾  ) )