| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blocni.8 | ⊢ 𝐶  =  ( IndMet ‘ 𝑈 ) | 
						
							| 2 |  | blocni.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑊 ) | 
						
							| 3 |  | blocni.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 4 |  | blocni.k | ⊢ 𝐾  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 5 |  | blocni.4 | ⊢ 𝐿  =  ( 𝑈  LnOp  𝑊 ) | 
						
							| 6 |  | blocni.5 | ⊢ 𝐵  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 7 |  | blocni.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 8 |  | blocni.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 9 |  | blocni.l | ⊢ 𝑇  ∈  𝐿 | 
						
							| 10 |  | blocnilem.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 11 | 10 1 | imsxmet | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐶  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 12 | 7 11 | ax-mp | ⊢ 𝐶  ∈  ( ∞Met ‘ 𝑋 ) | 
						
							| 13 |  | eqid | ⊢ ( BaseSet ‘ 𝑊 )  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 14 | 13 2 | imsxmet | ⊢ ( 𝑊  ∈  NrmCVec  →  𝐷  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) | 
						
							| 15 | 8 14 | ax-mp | ⊢ 𝐷  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 16 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 17 | 3 4 | metcnpi3 | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) )  ∧  ( 𝑇  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ∧  1  ∈  ℝ+ ) )  →  ∃ 𝑦  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 ) ) | 
						
							| 18 | 16 17 | mpanr2 | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) )  ∧  𝑇  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ∃ 𝑦  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 ) ) | 
						
							| 19 | 12 15 18 | mpanl12 | ⊢ ( 𝑇  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  ∃ 𝑦  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 ) ) | 
						
							| 20 |  | rpreccl | ⊢ ( 𝑦  ∈  ℝ+  →  ( 1  /  𝑦 )  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpred | ⊢ ( 𝑦  ∈  ℝ+  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 ) )  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 23 |  | eqid | ⊢ (  −𝑣  ‘ 𝑈 )  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 24 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 25 | 10 23 24 1 | imsdval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( 𝑥 𝐶 𝑃 )  =  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) ) | 
						
							| 26 | 7 25 | mp3an1 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( 𝑥 𝐶 𝑃 )  =  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) ) | 
						
							| 27 | 26 | breq1d | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  ↔  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦 ) ) | 
						
							| 28 | 10 13 5 | lnof | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐿 )  →  𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 29 | 7 8 9 28 | mp3an | ⊢ 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) | 
						
							| 30 | 29 | ffvelcdmi | ⊢ ( 𝑥  ∈  𝑋  →  ( 𝑇 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 31 | 29 | ffvelcdmi | ⊢ ( 𝑃  ∈  𝑋  →  ( 𝑇 ‘ 𝑃 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 32 |  | eqid | ⊢ (  −𝑣  ‘ 𝑊 )  =  (  −𝑣  ‘ 𝑊 ) | 
						
							| 33 |  | eqid | ⊢ ( normCV ‘ 𝑊 )  =  ( normCV ‘ 𝑊 ) | 
						
							| 34 | 13 32 33 2 | imsdval | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( 𝑇 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 )  ∧  ( 𝑇 ‘ 𝑃 )  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) | 
						
							| 35 | 8 34 | mp3an1 | ⊢ ( ( ( 𝑇 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 )  ∧  ( 𝑇 ‘ 𝑃 )  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) | 
						
							| 36 | 30 31 35 | syl2an | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) | 
						
							| 37 | 7 8 9 | 3pm3.2i | ⊢ ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐿 ) | 
						
							| 38 | 10 23 32 5 | lnosub | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 ) )  →  ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( ( 𝑇 ‘ 𝑥 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) | 
						
							| 39 | 37 38 | mpan | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( ( 𝑇 ‘ 𝑥 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) | 
						
							| 41 | 36 40 | eqtr4d | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) ) ) | 
						
							| 42 | 41 | breq1d | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) | 
						
							| 43 | 27 42 | imbi12d | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 )  ↔  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 44 | 43 | ancoms | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 )  ↔  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 45 | 44 | adantlr | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 )  ↔  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 46 | 45 | ralbidva | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 47 |  | 2fveq3 | ⊢ ( 𝑧  =  ( 0vec ‘ 𝑈 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑧  =  ( 0vec ‘ 𝑈 )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  =  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝑧  =  ( 0vec ‘ 𝑈 )  →  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  =  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) | 
						
							| 50 | 47 49 | breq12d | ⊢ ( 𝑧  =  ( 0vec ‘ 𝑈 )  →  ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) ) | 
						
							| 51 | 7 | a1i | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑈  ∈  NrmCVec ) | 
						
							| 52 |  | simpll | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 53 |  | simpr | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ∈  ℝ+ ) | 
						
							| 54 | 10 24 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑧  ∈  𝑋 )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 55 | 7 54 | mpan | ⊢ ( 𝑧  ∈  𝑋  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 57 |  | eqid | ⊢ ( 0vec ‘ 𝑈 )  =  ( 0vec ‘ 𝑈 ) | 
						
							| 58 | 10 57 24 | nvgt0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑧  ∈  𝑋 )  →  ( 𝑧  ≠  ( 0vec ‘ 𝑈 )  ↔  0  <  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 59 | 7 58 | mpan | ⊢ ( 𝑧  ∈  𝑋  →  ( 𝑧  ≠  ( 0vec ‘ 𝑈 )  ↔  0  <  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 60 | 59 | biimpa | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  →  0  <  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) | 
						
							| 61 | 56 60 | elrpd | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ+ ) | 
						
							| 62 |  | rpdivcl | ⊢ ( ( 𝑦  ∈  ℝ+  ∧  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ+ )  →  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℝ+ ) | 
						
							| 63 | 53 61 62 | syl2an | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℝ+ ) | 
						
							| 64 | 63 | rpcnd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 65 |  | simprl | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 66 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑈 )  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 67 | 10 66 | nvscl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℂ  ∧  𝑧  ∈  𝑋 )  →  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 )  ∈  𝑋 ) | 
						
							| 68 | 51 64 65 67 | syl3anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 )  ∈  𝑋 ) | 
						
							| 69 |  | eqid | ⊢ (  +𝑣  ‘ 𝑈 )  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 70 | 10 69 23 | nvpncan2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑃  ∈  𝑋  ∧  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 )  ∈  𝑋 )  →  ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) | 
						
							| 71 | 51 52 68 70 | syl3anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) ) | 
						
							| 73 | 63 | rprege0d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 74 | 10 66 24 | nvsge0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) )  ∧  𝑧  ∈  𝑋 )  →  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 75 | 51 73 65 74 | syl3anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 76 |  | rpcn | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ∈  ℂ ) | 
						
							| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 78 | 55 | ad2antrl | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 79 | 78 | recnd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 80 | 10 57 24 | nvz | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑧  ∈  𝑋 )  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  =  0  ↔  𝑧  =  ( 0vec ‘ 𝑈 ) ) ) | 
						
							| 81 | 7 80 | mpan | ⊢ ( 𝑧  ∈  𝑋  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  =  0  ↔  𝑧  =  ( 0vec ‘ 𝑈 ) ) ) | 
						
							| 82 | 81 | necon3bid | ⊢ ( 𝑧  ∈  𝑋  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≠  0  ↔  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) ) | 
						
							| 83 | 82 | biimpar | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≠  0 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≠  0 ) | 
						
							| 85 | 77 79 84 | divcan1d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  =  𝑦 ) | 
						
							| 86 | 72 75 85 | 3eqtrd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  𝑦 ) | 
						
							| 87 |  | rpre | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ∈  ℝ ) | 
						
							| 88 | 87 | leidd | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ≤  𝑦 ) | 
						
							| 89 | 88 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑦  ≤  𝑦 ) | 
						
							| 90 | 86 89 | eqbrtrd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦 ) | 
						
							| 91 | 10 69 | nvgcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑃  ∈  𝑋  ∧  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 )  ∈  𝑋 )  →  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  ∈  𝑋 ) | 
						
							| 92 | 51 52 68 91 | syl3anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  ∈  𝑋 ) | 
						
							| 93 |  | fvoveq1 | ⊢ ( 𝑥  =  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  →  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) ) | 
						
							| 94 | 93 | breq1d | ⊢ ( 𝑥  =  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  →  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  ↔  ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦 ) ) | 
						
							| 95 |  | fvoveq1 | ⊢ ( 𝑥  =  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  →  ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( 𝑥  =  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) ) ) | 
						
							| 97 | 96 | breq1d | ⊢ ( 𝑥  =  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  →  ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) | 
						
							| 98 | 94 97 | imbi12d | ⊢ ( 𝑥  =  ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  →  ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  ↔  ( ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 99 | 98 | rspcv | ⊢ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ( ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 100 | 92 99 | syl | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ( ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) ) | 
						
							| 101 | 90 100 | mpid | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) ) | 
						
							| 102 | 29 | ffvelcdmi | ⊢ ( 𝑧  ∈  𝑋  →  ( 𝑇 ‘ 𝑧 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 103 | 13 33 | nvcl | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( 𝑇 ‘ 𝑧 )  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 104 | 8 102 103 | sylancr | ⊢ ( 𝑧  ∈  𝑋  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 105 | 104 | ad2antrl | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 106 |  | 1red | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  1  ∈  ℝ ) | 
						
							| 107 | 105 106 63 | lemuldiv2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) )  ≤  1  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 1  /  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 108 | 71 | fveq2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( 𝑇 ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) ) | 
						
							| 109 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑊 )  =  (  ·𝑠OLD  ‘ 𝑊 ) | 
						
							| 110 | 10 66 109 5 | lnomul | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐿 )  ∧  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℂ  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑇 ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 111 | 37 110 | mpan | ⊢ ( ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℂ  ∧  𝑧  ∈  𝑋 )  →  ( 𝑇 ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 112 | 64 65 111 | syl2anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑇 ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 113 | 108 112 | eqtrd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 114 | 113 | fveq2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 115 | 8 | a1i | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑊  ∈  NrmCVec ) | 
						
							| 116 | 102 | ad2antrl | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 𝑇 ‘ 𝑧 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 117 | 13 109 33 | nvsge0 | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) )  ∧  ( 𝑇 ‘ 𝑧 )  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 118 | 115 73 116 117 | syl3anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 119 | 114 118 | eqtrd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  =  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 120 | 119 | breq1d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1  ↔  ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ·  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) )  ≤  1 ) ) | 
						
							| 121 |  | rpcnne0 | ⊢ ( 𝑦  ∈  ℝ+  →  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) ) | 
						
							| 122 |  | rpcnne0 | ⊢ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ+  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℂ  ∧  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≠  0 ) ) | 
						
							| 123 |  | recdiv | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 )  ∧  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℂ  ∧  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≠  0 ) )  →  ( 1  /  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) )  =  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  /  𝑦 ) ) | 
						
							| 124 | 121 122 123 | syl2an | ⊢ ( ( 𝑦  ∈  ℝ+  ∧  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ∈  ℝ+ )  →  ( 1  /  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) )  =  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  /  𝑦 ) ) | 
						
							| 125 | 53 61 124 | syl2an | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( 1  /  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) )  =  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  /  𝑦 ) ) | 
						
							| 126 |  | rpne0 | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ≠  0 ) | 
						
							| 127 | 126 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  𝑦  ≠  0 ) | 
						
							| 128 | 79 77 127 | divrec2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  /  𝑦 )  =  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 129 | 125 128 | eqtr2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  =  ( 1  /  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 130 | 129 | breq2d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 1  /  ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 131 | 107 120 130 | 3bitr4d | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 (  +𝑣  ‘ 𝑈 ) ( ( 𝑦  /  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) (  ·𝑠OLD  ‘ 𝑈 ) 𝑧 ) ) (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 132 | 101 131 | sylibd | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) ) )  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 133 | 132 | anassrs | ⊢ ( ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑋 )  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 134 | 133 | imp | ⊢ ( ( ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑋 )  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 135 | 134 | an32s | ⊢ ( ( ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) )  ∧  𝑧  ≠  ( 0vec ‘ 𝑈 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 136 |  | eqid | ⊢ ( 0vec ‘ 𝑊 )  =  ( 0vec ‘ 𝑊 ) | 
						
							| 137 | 10 13 57 136 5 | lno0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐿 )  →  ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) )  =  ( 0vec ‘ 𝑊 ) ) | 
						
							| 138 | 7 8 9 137 | mp3an | ⊢ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) )  =  ( 0vec ‘ 𝑊 ) | 
						
							| 139 | 138 | fveq2i | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) | 
						
							| 140 | 136 33 | nvz0 | ⊢ ( 𝑊  ∈  NrmCVec  →  ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) )  =  0 ) | 
						
							| 141 | 8 140 | ax-mp | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) )  =  0 | 
						
							| 142 | 139 141 | eqtri | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) )  =  0 | 
						
							| 143 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 144 | 142 143 | eqbrtri | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) )  ≤  0 | 
						
							| 145 | 20 | rpcnd | ⊢ ( 𝑦  ∈  ℝ+  →  ( 1  /  𝑦 )  ∈  ℂ ) | 
						
							| 146 | 57 24 | nvz0 | ⊢ ( 𝑈  ∈  NrmCVec  →  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) )  =  0 ) | 
						
							| 147 | 7 146 | ax-mp | ⊢ ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) )  =  0 | 
						
							| 148 | 147 | oveq2i | ⊢ ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) )  =  ( ( 1  /  𝑦 )  ·  0 ) | 
						
							| 149 |  | mul01 | ⊢ ( ( 1  /  𝑦 )  ∈  ℂ  →  ( ( 1  /  𝑦 )  ·  0 )  =  0 ) | 
						
							| 150 | 148 149 | eqtrid | ⊢ ( ( 1  /  𝑦 )  ∈  ℂ  →  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) )  =  0 ) | 
						
							| 151 | 145 150 | syl | ⊢ ( 𝑦  ∈  ℝ+  →  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) )  =  0 ) | 
						
							| 152 | 144 151 | breqtrrid | ⊢ ( 𝑦  ∈  ℝ+  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) | 
						
							| 153 | 152 | ad3antlr | ⊢ ( ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) | 
						
							| 154 | 50 135 153 | pm2.61ne | ⊢ ( ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 155 | 154 | ex | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 156 | 155 | ralrimdva | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) )  ≤  𝑦  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 (  −𝑣  ‘ 𝑈 ) 𝑃 ) ) )  ≤  1 )  →  ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 157 | 46 156 | sylbid | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 )  →  ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 158 | 157 | imp | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 ) )  →  ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 159 |  | oveq1 | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  =  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 160 | 159 | breq2d | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ↔  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 161 | 160 | ralbidv | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) )  ↔  ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 162 | 161 | rspcev | ⊢ ( ( ( 1  /  𝑦 )  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( ( 1  /  𝑦 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 163 | 22 158 162 | syl2anc | ⊢ ( ( ( 𝑃  ∈  𝑋  ∧  𝑦  ∈  ℝ+ )  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 164 | 163 | rexlimdva2 | ⊢ ( 𝑃  ∈  𝑋  →  ( ∃ 𝑦  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐶 𝑃 )  ≤  𝑦  →  ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) )  ≤  1 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 165 | 19 164 | syl5 | ⊢ ( 𝑃  ∈  𝑋  →  ( 𝑇  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 166 | 165 | imp | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑇  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 167 | 10 24 33 5 6 7 8 | isblo3i | ⊢ ( 𝑇  ∈  𝐵  ↔  ( 𝑇  ∈  𝐿  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) | 
						
							| 168 | 9 167 | mpbiran | ⊢ ( 𝑇  ∈  𝐵  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) )  ≤  ( 𝑥  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | 
						
							| 169 | 166 168 | sylibr | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑇  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝑇  ∈  𝐵 ) |