Metamath Proof Explorer


Theorem nvscl

Description: Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvscl.4 𝑆 = ( ·𝑠OLD𝑈 )
Assertion nvscl ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋 ) → ( 𝐴 𝑆 𝐵 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 nvscl.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvscl.4 𝑆 = ( ·𝑠OLD𝑈 )
3 eqid ( 1st𝑈 ) = ( 1st𝑈 )
4 3 nvvc ( 𝑈 ∈ NrmCVec → ( 1st𝑈 ) ∈ CVecOLD )
5 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
6 5 vafval ( +𝑣𝑈 ) = ( 1st ‘ ( 1st𝑈 ) )
7 2 smfval 𝑆 = ( 2nd ‘ ( 1st𝑈 ) )
8 1 5 bafval 𝑋 = ran ( +𝑣𝑈 )
9 6 7 8 vccl ( ( ( 1st𝑈 ) ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋 ) → ( 𝐴 𝑆 𝐵 ) ∈ 𝑋 )
10 4 9 syl3an1 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋 ) → ( 𝐴 𝑆 𝐵 ) ∈ 𝑋 )