Metamath Proof Explorer


Theorem nvvc

Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis nvvc.1 𝑊 = ( 1st𝑈 )
Assertion nvvc ( 𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD )

Proof

Step Hyp Ref Expression
1 nvvc.1 𝑊 = ( 1st𝑈 )
2 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
3 eqid ( ·𝑠OLD𝑈 ) = ( ·𝑠OLD𝑈 )
4 1 2 3 nvvop ( 𝑈 ∈ NrmCVec → 𝑊 = ⟨ ( +𝑣𝑈 ) , ( ·𝑠OLD𝑈 ) ⟩ )
5 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
6 eqid ( 0vec𝑈 ) = ( 0vec𝑈 )
7 eqid ( normCV𝑈 ) = ( normCV𝑈 )
8 5 2 3 6 7 nvi ( 𝑈 ∈ NrmCVec → ( ⟨ ( +𝑣𝑈 ) , ( ·𝑠OLD𝑈 ) ⟩ ∈ CVecOLD ∧ ( normCV𝑈 ) : ( BaseSet ‘ 𝑈 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( ( normCV𝑈 ) ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( ( normCV𝑈 ) ‘ ( 𝑦 ( ·𝑠OLD𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( ( normCV𝑈 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV𝑈 ) ‘ ( 𝑥 ( +𝑣𝑈 ) 𝑦 ) ) ≤ ( ( ( normCV𝑈 ) ‘ 𝑥 ) + ( ( normCV𝑈 ) ‘ 𝑦 ) ) ) ) )
9 8 simp1d ( 𝑈 ∈ NrmCVec → ⟨ ( +𝑣𝑈 ) , ( ·𝑠OLD𝑈 ) ⟩ ∈ CVecOLD )
10 4 9 eqeltrd ( 𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD )