Metamath Proof Explorer


Theorem nvvc

Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis nvvc.1 W=1stU
Assertion nvvc UNrmCVecWCVecOLD

Proof

Step Hyp Ref Expression
1 nvvc.1 W=1stU
2 eqid +vU=+vU
3 eqid 𝑠OLDU=𝑠OLDU
4 1 2 3 nvvop UNrmCVecW=+vU𝑠OLDU
5 eqid BaseSetU=BaseSetU
6 eqid 0vecU=0vecU
7 eqid normCVU=normCVU
8 5 2 3 6 7 nvi UNrmCVec+vU𝑠OLDUCVecOLDnormCVU:BaseSetUxBaseSetUnormCVUx=0x=0vecUynormCVUy𝑠OLDUx=ynormCVUxyBaseSetUnormCVUx+vUynormCVUx+normCVUy
9 8 simp1d UNrmCVec+vU𝑠OLDUCVecOLD
10 4 9 eqeltrd UNrmCVecWCVecOLD