| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvpncan2.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
nvpncan2.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 3 |
|
nvpncan2.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑈 ∈ NrmCVec ) |
| 5 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 6 |
|
simp2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 7 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 8 |
1 2 7 3
|
nvmval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 9 |
4 5 6 8
|
syl3anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 10 |
|
simp3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
| 11 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 12 |
1 7
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 13 |
11 12
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 15 |
1 2
|
nvadd32 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) ) |
| 16 |
4 6 10 14 15
|
syl13anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) ) |
| 17 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
| 18 |
1 2 7 17
|
nvrinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) ) |
| 21 |
1 2 17
|
nv0lid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) = 𝐵 ) |
| 22 |
21
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) = 𝐵 ) |
| 23 |
20 22
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) = 𝐵 ) |
| 24 |
16 23
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = 𝐵 ) |
| 25 |
9 24
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 ) = 𝐵 ) |