Step |
Hyp |
Ref |
Expression |
1 |
|
nvpncan2.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvpncan2.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
nvpncan2.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
4 |
1 2
|
nvcom |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐵 ) ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐴 ) 𝑀 𝐵 ) = ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) ) |
6 |
1 2 3
|
nvpncan2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐴 ) 𝑀 𝐵 ) = 𝐴 ) |
7 |
5 6
|
eqtr3d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) = 𝐴 ) |
8 |
7
|
3com23 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 ) = 𝐴 ) |