Step |
Hyp |
Ref |
Expression |
1 |
|
nvpncan2.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvpncan2.2 |
|- G = ( +v ` U ) |
3 |
|
nvpncan2.3 |
|- M = ( -v ` U ) |
4 |
1 2
|
nvcom |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B G A ) = ( A G B ) ) |
5 |
4
|
oveq1d |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( B G A ) M B ) = ( ( A G B ) M B ) ) |
6 |
1 2 3
|
nvpncan2 |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( B G A ) M B ) = A ) |
7 |
5 6
|
eqtr3d |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( A G B ) M B ) = A ) |
8 |
7
|
3com23 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = A ) |