Description: Commutative/associative law for vector addition. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nvgcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
Assertion | nvadd32 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvgcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
2 | nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
3 | 2 | nvablo | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp ) |
4 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
5 | 4 | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
6 | 3 5 | sylan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |