| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnosub.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
lnosub.5 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 3 |
|
lnosub.6 |
⊢ 𝑁 = ( −𝑣 ‘ 𝑊 ) |
| 4 |
|
lnosub.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
| 5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 6 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 8 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
| 11 |
1 6 7 8 9 10 4
|
lnolin |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 12 |
5 11
|
mp3anr1 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 13 |
12
|
ancom2s |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 14 |
1 7 9 2
|
nvmval2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) |
| 15 |
14
|
3expb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) |
| 16 |
15
|
3ad2antl1 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ) |
| 18 |
|
simpl2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝑊 ∈ NrmCVec ) |
| 19 |
1 6 4
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 20 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 21 |
|
ffvelcdm |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 22 |
19 20 21
|
syl2an |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝑇 ‘ 𝐵 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 25 |
19 23 24
|
syl2an |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ 𝐵 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 26 |
6 8 10 3
|
nvmval2 |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑇 ‘ 𝐵 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 27 |
18 22 25 26
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐵 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) ) |
| 28 |
13 17 27
|
3eqtr4d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) 𝑁 ( 𝑇 ‘ 𝐵 ) ) ) |