| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnosub.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
lnosub.5 |
|- M = ( -v ` U ) |
| 3 |
|
lnosub.6 |
|- N = ( -v ` W ) |
| 4 |
|
lnosub.7 |
|- L = ( U LnOp W ) |
| 5 |
|
neg1cn |
|- -u 1 e. CC |
| 6 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
| 7 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
| 8 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
| 9 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
| 10 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
| 11 |
1 6 7 8 9 10 4
|
lnolin |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( -u 1 e. CC /\ B e. X /\ A e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 12 |
5 11
|
mp3anr1 |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( B e. X /\ A e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 13 |
12
|
ancom2s |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 14 |
1 7 9 2
|
nvmval2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) |
| 15 |
14
|
3expb |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A M B ) = ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) |
| 16 |
15
|
3ad2antl1 |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( A M B ) = ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) |
| 17 |
16
|
fveq2d |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A M B ) ) = ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) ) |
| 18 |
|
simpl2 |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> W e. NrmCVec ) |
| 19 |
1 6 4
|
lnof |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> ( BaseSet ` W ) ) |
| 20 |
|
simpl |
|- ( ( A e. X /\ B e. X ) -> A e. X ) |
| 21 |
|
ffvelcdm |
|- ( ( T : X --> ( BaseSet ` W ) /\ A e. X ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
| 22 |
19 20 21
|
syl2an |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
| 23 |
|
simpr |
|- ( ( A e. X /\ B e. X ) -> B e. X ) |
| 24 |
|
ffvelcdm |
|- ( ( T : X --> ( BaseSet ` W ) /\ B e. X ) -> ( T ` B ) e. ( BaseSet ` W ) ) |
| 25 |
19 23 24
|
syl2an |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` B ) e. ( BaseSet ` W ) ) |
| 26 |
6 8 10 3
|
nvmval2 |
|- ( ( W e. NrmCVec /\ ( T ` A ) e. ( BaseSet ` W ) /\ ( T ` B ) e. ( BaseSet ` W ) ) -> ( ( T ` A ) N ( T ` B ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 27 |
18 22 25 26
|
syl3anc |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( ( T ` A ) N ( T ` B ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 28 |
13 17 27
|
3eqtr4d |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A M B ) ) = ( ( T ` A ) N ( T ` B ) ) ) |