| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnoval.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | lnoval.2 |  |-  Y = ( BaseSet ` W ) | 
						
							| 3 |  | lnoval.3 |  |-  G = ( +v ` U ) | 
						
							| 4 |  | lnoval.4 |  |-  H = ( +v ` W ) | 
						
							| 5 |  | lnoval.5 |  |-  R = ( .sOLD ` U ) | 
						
							| 6 |  | lnoval.6 |  |-  S = ( .sOLD ` W ) | 
						
							| 7 |  | lnoval.7 |  |-  L = ( U LnOp W ) | 
						
							| 8 | 1 2 3 4 5 6 7 | islno |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. L <-> ( T : X --> Y /\ A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) ) ) | 
						
							| 9 | 8 | biimp3a |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T : X --> Y /\ A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) ) | 
						
							| 10 | 9 | simprd |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( u = A -> ( u R w ) = ( A R w ) ) | 
						
							| 12 | 11 | fvoveq1d |  |-  ( u = A -> ( T ` ( ( u R w ) G t ) ) = ( T ` ( ( A R w ) G t ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( u = A -> ( u S ( T ` w ) ) = ( A S ( T ` w ) ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( u = A -> ( ( u S ( T ` w ) ) H ( T ` t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) ) | 
						
							| 15 | 12 14 | eqeq12d |  |-  ( u = A -> ( ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) <-> ( T ` ( ( A R w ) G t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) ) ) | 
						
							| 16 |  | oveq2 |  |-  ( w = B -> ( A R w ) = ( A R B ) ) | 
						
							| 17 | 16 | fvoveq1d |  |-  ( w = B -> ( T ` ( ( A R w ) G t ) ) = ( T ` ( ( A R B ) G t ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( w = B -> ( T ` w ) = ( T ` B ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( w = B -> ( A S ( T ` w ) ) = ( A S ( T ` B ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( w = B -> ( ( A S ( T ` w ) ) H ( T ` t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) ) | 
						
							| 21 | 17 20 | eqeq12d |  |-  ( w = B -> ( ( T ` ( ( A R w ) G t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) <-> ( T ` ( ( A R B ) G t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) ) ) | 
						
							| 22 |  | oveq2 |  |-  ( t = C -> ( ( A R B ) G t ) = ( ( A R B ) G C ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( t = C -> ( T ` ( ( A R B ) G t ) ) = ( T ` ( ( A R B ) G C ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( t = C -> ( T ` t ) = ( T ` C ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( t = C -> ( ( A S ( T ` B ) ) H ( T ` t ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) | 
						
							| 26 | 23 25 | eqeq12d |  |-  ( t = C -> ( ( T ` ( ( A R B ) G t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) <-> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) ) | 
						
							| 27 | 15 21 26 | rspc3v |  |-  ( ( A e. CC /\ B e. X /\ C e. X ) -> ( A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) ) | 
						
							| 28 | 10 27 | mpan9 |  |-  ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) |