Metamath Proof Explorer


Theorem lo1sub

Description: The difference of an eventually upper bounded function and an eventually bounded function is eventually upper bounded. The "correct" sharp result here takes the second function to be eventually lower bounded instead of just bounded, but our notation for this is simply ( x e. A |-> -u C ) e. <_O(1) , so it is just a special case of lo1add . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses lo1sub.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
lo1sub.2 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ )
lo1sub.3 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )
lo1sub.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝑂(1) )
Assertion lo1sub ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ ≤𝑂(1) )

Proof

Step Hyp Ref Expression
1 lo1sub.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 lo1sub.2 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ )
3 lo1sub.3 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )
4 lo1sub.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝑂(1) )
5 1 3 lo1mptrcl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
6 5 recnd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
7 2 recnd ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
8 6 7 negsubd ( ( 𝜑𝑥𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵𝐶 ) )
9 8 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) )
10 2 renegcld ( ( 𝜑𝑥𝐴 ) → - 𝐶 ∈ ℝ )
11 2 o1lo1 ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∈ 𝑂(1) ↔ ( ( 𝑥𝐴𝐶 ) ∈ ≤𝑂(1) ∧ ( 𝑥𝐴 ↦ - 𝐶 ) ∈ ≤𝑂(1) ) ) )
12 4 11 mpbid ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∈ ≤𝑂(1) ∧ ( 𝑥𝐴 ↦ - 𝐶 ) ∈ ≤𝑂(1) ) )
13 12 simprd ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐶 ) ∈ ≤𝑂(1) )
14 5 10 3 13 lo1add ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ ≤𝑂(1) )
15 9 14 eqeltrrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ ≤𝑂(1) )