Metamath Proof Explorer


Theorem locfintop

Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Assertion locfintop ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 eqid 𝐴 = 𝐴
3 1 2 islocfin ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝐽 = 𝐴 ∧ ∀ 𝑠 𝐽𝑛𝐽 ( 𝑠𝑛 ∧ { 𝑥𝐴 ∣ ( 𝑥𝑛 ) ≠ ∅ } ∈ Fin ) ) )
4 3 simp1bi ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top )