| Step | Hyp | Ref | Expression | 
						
							| 1 |  | log11d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | log11d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | log11d.1 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 |  | log11d.2 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 5 |  | fveq2 | ⊢ ( ( log ‘ 𝐴 )  =  ( log ‘ 𝐵 )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  ( exp ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 6 |  | eflog | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 7 | 1 3 6 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 8 |  | eflog | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 9 | 2 4 8 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝜑  →  ( ( exp ‘ ( log ‘ 𝐴 ) )  =  ( exp ‘ ( log ‘ 𝐵 ) )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 11 | 5 10 | imbitrid | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  =  ( log ‘ 𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝐴  =  𝐵  →  ( log ‘ 𝐴 )  =  ( log ‘ 𝐵 ) ) | 
						
							| 13 | 11 12 | impbid1 | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  =  ( log ‘ 𝐵 )  ↔  𝐴  =  𝐵 ) ) |