| Step | Hyp | Ref | Expression | 
						
							| 1 |  | log11d.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | log11d.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | log11d.1 |  |-  ( ph -> A =/= 0 ) | 
						
							| 4 |  | log11d.2 |  |-  ( ph -> B =/= 0 ) | 
						
							| 5 |  | fveq2 |  |-  ( ( log ` A ) = ( log ` B ) -> ( exp ` ( log ` A ) ) = ( exp ` ( log ` B ) ) ) | 
						
							| 6 |  | eflog |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 7 | 1 3 6 | syl2anc |  |-  ( ph -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 8 |  | eflog |  |-  ( ( B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) | 
						
							| 9 | 2 4 8 | syl2anc |  |-  ( ph -> ( exp ` ( log ` B ) ) = B ) | 
						
							| 10 | 7 9 | eqeq12d |  |-  ( ph -> ( ( exp ` ( log ` A ) ) = ( exp ` ( log ` B ) ) <-> A = B ) ) | 
						
							| 11 | 5 10 | imbitrid |  |-  ( ph -> ( ( log ` A ) = ( log ` B ) -> A = B ) ) | 
						
							| 12 |  | fveq2 |  |-  ( A = B -> ( log ` A ) = ( log ` B ) ) | 
						
							| 13 | 11 12 | impbid1 |  |-  ( ph -> ( ( log ` A ) = ( log ` B ) <-> A = B ) ) |