| Step |
Hyp |
Ref |
Expression |
| 1 |
|
log11d.a |
|- ( ph -> A e. CC ) |
| 2 |
|
log11d.b |
|- ( ph -> B e. CC ) |
| 3 |
|
log11d.1 |
|- ( ph -> A =/= 0 ) |
| 4 |
|
log11d.2 |
|- ( ph -> B =/= 0 ) |
| 5 |
|
fveq2 |
|- ( ( log ` A ) = ( log ` B ) -> ( exp ` ( log ` A ) ) = ( exp ` ( log ` B ) ) ) |
| 6 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
| 7 |
1 3 6
|
syl2anc |
|- ( ph -> ( exp ` ( log ` A ) ) = A ) |
| 8 |
|
eflog |
|- ( ( B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
| 9 |
2 4 8
|
syl2anc |
|- ( ph -> ( exp ` ( log ` B ) ) = B ) |
| 10 |
7 9
|
eqeq12d |
|- ( ph -> ( ( exp ` ( log ` A ) ) = ( exp ` ( log ` B ) ) <-> A = B ) ) |
| 11 |
5 10
|
imbitrid |
|- ( ph -> ( ( log ` A ) = ( log ` B ) -> A = B ) ) |
| 12 |
|
fveq2 |
|- ( A = B -> ( log ` A ) = ( log ` B ) ) |
| 13 |
11 12
|
impbid1 |
|- ( ph -> ( ( log ` A ) = ( log ` B ) <-> A = B ) ) |