Metamath Proof Explorer
		
		
		
		Description:  Deduction form of logne0 .  See logccne0d for a more general
       version.  (Contributed by SN, 25-Apr-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | logne0d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
					
						|  |  | logne0d.1 | ⊢ ( 𝜑  →  𝐴  ≠  1 ) | 
				
					|  | Assertion | logne0d | ⊢  ( 𝜑  →  ( log ‘ 𝐴 )  ≠  0 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logne0d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | logne0d.1 | ⊢ ( 𝜑  →  𝐴  ≠  1 ) | 
						
							| 3 |  | logne0 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≠  1 )  →  ( log ‘ 𝐴 )  ≠  0 ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ≠  0 ) |