| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rxp112d.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 2 |  | rxp112d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | rxp112d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | rxp112d.1 | ⊢ ( 𝜑  →  𝐶  ≠  1 ) | 
						
							| 5 |  | rxp112d.2 | ⊢ ( 𝜑  →  ( 𝐶 ↑𝑐 𝐴 )  =  ( 𝐶 ↑𝑐 𝐵 ) ) | 
						
							| 6 | 2 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 3 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 1 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 10 | 1 4 | logne0d | ⊢ ( 𝜑  →  ( log ‘ 𝐶 )  ≠  0 ) | 
						
							| 11 | 5 | fveq2d | ⊢ ( 𝜑  →  ( log ‘ ( 𝐶 ↑𝑐 𝐴 ) )  =  ( log ‘ ( 𝐶 ↑𝑐 𝐵 ) ) ) | 
						
							| 12 | 1 2 | logcxpd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐶 ↑𝑐 𝐴 ) )  =  ( 𝐴  ·  ( log ‘ 𝐶 ) ) ) | 
						
							| 13 | 1 3 | logcxpd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐶 ↑𝑐 𝐵 ) )  =  ( 𝐵  ·  ( log ‘ 𝐶 ) ) ) | 
						
							| 14 | 11 12 13 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐴  ·  ( log ‘ 𝐶 ) )  =  ( 𝐵  ·  ( log ‘ 𝐶 ) ) ) | 
						
							| 15 | 6 7 9 10 14 | mulcan2ad | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |