| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rxp112d.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 2 |  | rxp112d.a |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | rxp112d.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | rxp112d.1 |  |-  ( ph -> C =/= 1 ) | 
						
							| 5 |  | rxp112d.2 |  |-  ( ph -> ( C ^c A ) = ( C ^c B ) ) | 
						
							| 6 | 2 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 7 | 3 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 8 | 1 | relogcld |  |-  ( ph -> ( log ` C ) e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( ph -> ( log ` C ) e. CC ) | 
						
							| 10 | 1 4 | logne0d |  |-  ( ph -> ( log ` C ) =/= 0 ) | 
						
							| 11 | 5 | fveq2d |  |-  ( ph -> ( log ` ( C ^c A ) ) = ( log ` ( C ^c B ) ) ) | 
						
							| 12 | 1 2 | logcxpd |  |-  ( ph -> ( log ` ( C ^c A ) ) = ( A x. ( log ` C ) ) ) | 
						
							| 13 | 1 3 | logcxpd |  |-  ( ph -> ( log ` ( C ^c B ) ) = ( B x. ( log ` C ) ) ) | 
						
							| 14 | 11 12 13 | 3eqtr3d |  |-  ( ph -> ( A x. ( log ` C ) ) = ( B x. ( log ` C ) ) ) | 
						
							| 15 | 6 7 9 10 14 | mulcan2ad |  |-  ( ph -> A = B ) |