| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rxp112d.c |
|- ( ph -> C e. RR+ ) |
| 2 |
|
rxp112d.a |
|- ( ph -> A e. RR ) |
| 3 |
|
rxp112d.b |
|- ( ph -> B e. RR ) |
| 4 |
|
rxp112d.1 |
|- ( ph -> C =/= 1 ) |
| 5 |
|
rxp112d.2 |
|- ( ph -> ( C ^c A ) = ( C ^c B ) ) |
| 6 |
2
|
recnd |
|- ( ph -> A e. CC ) |
| 7 |
3
|
recnd |
|- ( ph -> B e. CC ) |
| 8 |
1
|
relogcld |
|- ( ph -> ( log ` C ) e. RR ) |
| 9 |
8
|
recnd |
|- ( ph -> ( log ` C ) e. CC ) |
| 10 |
1 4
|
logne0d |
|- ( ph -> ( log ` C ) =/= 0 ) |
| 11 |
5
|
fveq2d |
|- ( ph -> ( log ` ( C ^c A ) ) = ( log ` ( C ^c B ) ) ) |
| 12 |
1 2
|
logcxpd |
|- ( ph -> ( log ` ( C ^c A ) ) = ( A x. ( log ` C ) ) ) |
| 13 |
1 3
|
logcxpd |
|- ( ph -> ( log ` ( C ^c B ) ) = ( B x. ( log ` C ) ) ) |
| 14 |
11 12 13
|
3eqtr3d |
|- ( ph -> ( A x. ( log ` C ) ) = ( B x. ( log ` C ) ) ) |
| 15 |
6 7 9 10 14
|
mulcan2ad |
|- ( ph -> A = B ) |