Description: Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltadd12dd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
ltadd12dd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
ltadd12dd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
ltadd12dd.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
ltadd12dd.ac | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | ||
ltadd12dd.bd | ⊢ ( 𝜑 → 𝐵 < 𝐷 ) | ||
Assertion | ltadd12dd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd12dd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | ltadd12dd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | ltadd12dd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
4 | ltadd12dd.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
5 | ltadd12dd.ac | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | |
6 | ltadd12dd.bd | ⊢ ( 𝜑 → 𝐵 < 𝐷 ) | |
7 | 1 2 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
8 | 3 2 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
9 | 3 4 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
10 | 1 3 2 5 | ltadd1dd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ) |
11 | 2 4 3 6 | ltadd2dd | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |
12 | 7 8 9 10 11 | lttrd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |