| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltadd12dd.a |
|- ( ph -> A e. RR ) |
| 2 |
|
ltadd12dd.b |
|- ( ph -> B e. RR ) |
| 3 |
|
ltadd12dd.c |
|- ( ph -> C e. RR ) |
| 4 |
|
ltadd12dd.d |
|- ( ph -> D e. RR ) |
| 5 |
|
ltadd12dd.ac |
|- ( ph -> A < C ) |
| 6 |
|
ltadd12dd.bd |
|- ( ph -> B < D ) |
| 7 |
1 2
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
| 8 |
3 2
|
readdcld |
|- ( ph -> ( C + B ) e. RR ) |
| 9 |
3 4
|
readdcld |
|- ( ph -> ( C + D ) e. RR ) |
| 10 |
1 3 2 5
|
ltadd1dd |
|- ( ph -> ( A + B ) < ( C + B ) ) |
| 11 |
2 4 3 6
|
ltadd2dd |
|- ( ph -> ( C + B ) < ( C + D ) ) |
| 12 |
7 8 9 10 11
|
lttrd |
|- ( ph -> ( A + B ) < ( C + D ) ) |