Metamath Proof Explorer


Theorem ltrncoat

Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel , ltrnat uses. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses ltrnel.l = ( le ‘ 𝐾 )
ltrnel.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrnel.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrnel.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 ltrnel.l = ( le ‘ 𝐾 )
2 ltrnel.a 𝐴 = ( Atoms ‘ 𝐾 )
3 ltrnel.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ltrnel.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → 𝐹𝑇 )
7 1 2 3 4 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑃𝐴 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
8 7 3adant2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
9 1 2 3 4 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
10 5 6 8 9 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )