Metamath Proof Explorer
Description: Not equal and not larger implies smaller. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
lttri5d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
lttri5d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lttri5d.aneb |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
|
lttri5d.nlt |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
|
Assertion |
lttri5d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lttri5d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
lttri5d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
lttri5d.aneb |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 4 |
|
lttri5d.nlt |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
| 5 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 7 |
5 6 3 4
|
xrlttri5d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |