| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzisoeu.h |
⊢ ( 𝜑 → 𝐻 ∈ Fin ) |
| 2 |
|
fzisoeu.or |
⊢ ( 𝜑 → < Or 𝐻 ) |
| 3 |
|
fzisoeu.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
fzisoeu.4 |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) |
| 5 |
|
fzssz |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ℤ |
| 6 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 7 |
5 6
|
sstri |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ℝ |
| 8 |
|
ltso |
⊢ < Or ℝ |
| 9 |
|
soss |
⊢ ( ( 𝑀 ... 𝑁 ) ⊆ ℝ → ( < Or ℝ → < Or ( 𝑀 ... 𝑁 ) ) ) |
| 10 |
7 8 9
|
mp2 |
⊢ < Or ( 𝑀 ... 𝑁 ) |
| 11 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
| 12 |
|
fz1iso |
⊢ ( ( < Or ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) ) |
| 13 |
10 11 12
|
mp2an |
⊢ ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝐻 = ∅ → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ∅ ) ) |
| 15 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 16 |
14 15
|
eqtrdi |
⊢ ( 𝐻 = ∅ → ( ♯ ‘ 𝐻 ) = 0 ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝐻 = ∅ → ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) = ( 0 + ( 𝑀 − 1 ) ) ) |
| 18 |
4 17
|
eqtrid |
⊢ ( 𝐻 = ∅ → 𝑁 = ( 0 + ( 𝑀 − 1 ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝐻 = ∅ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( 𝑀 ... 𝑁 ) = ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) ) |
| 21 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 22 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 23 |
21 22
|
subcld |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℂ ) |
| 24 |
23
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝑀 − 1 ) ) = ( 𝑀 − 1 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) = ( 𝑀 ... ( 𝑀 − 1 ) ) ) |
| 26 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 27 |
26
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
| 28 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 29 |
3 28
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 30 |
|
fzn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
| 31 |
3 29 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
| 32 |
27 31
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) |
| 33 |
25 32
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) = ∅ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( 𝑀 ... ( 0 + ( 𝑀 − 1 ) ) ) = ∅ ) |
| 35 |
|
eqcom |
⊢ ( 𝐻 = ∅ ↔ ∅ = 𝐻 ) |
| 36 |
35
|
biimpi |
⊢ ( 𝐻 = ∅ → ∅ = 𝐻 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ∅ = 𝐻 ) |
| 38 |
20 34 37
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( 𝑀 ... 𝑁 ) = 𝐻 ) |
| 39 |
38
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐻 = ∅ ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ♯ ‘ 𝐻 ) ) |
| 40 |
22 21
|
pncan3d |
⊢ ( 𝜑 → ( 1 + ( 𝑀 − 1 ) ) = 𝑀 ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝜑 → 𝑀 = ( 1 + ( 𝑀 − 1 ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑀 = ( 1 + ( 𝑀 − 1 ) ) ) |
| 43 |
|
1red |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 1 ∈ ℝ ) |
| 44 |
|
neqne |
⊢ ( ¬ 𝐻 = ∅ → 𝐻 ≠ ∅ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝐻 ≠ ∅ ) |
| 46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝐻 ∈ Fin ) |
| 47 |
|
hashnncl |
⊢ ( 𝐻 ∈ Fin → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ( ♯ ‘ 𝐻 ) ∈ ℕ ↔ 𝐻 ≠ ∅ ) ) |
| 49 |
45 48
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ 𝐻 ) ∈ ℕ ) |
| 50 |
49
|
nnred |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ 𝐻 ) ∈ ℝ ) |
| 51 |
29
|
zred |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 53 |
49
|
nnge1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 1 ≤ ( ♯ ‘ 𝐻 ) ) |
| 54 |
43 50 52 53
|
leadd1dd |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 1 + ( 𝑀 − 1 ) ) ≤ ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) ) |
| 55 |
54 4
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 1 + ( 𝑀 − 1 ) ) ≤ 𝑁 ) |
| 56 |
42 55
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑀 ≤ 𝑁 ) |
| 57 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑀 ∈ ℤ ) |
| 58 |
|
hashcl |
⊢ ( 𝐻 ∈ Fin → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 59 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐻 ) ∈ ℕ0 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
| 60 |
1 58 59
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℤ ) |
| 61 |
60 29
|
zaddcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) ∈ ℤ ) |
| 62 |
4 61
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑁 ∈ ℤ ) |
| 64 |
|
eluz |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
| 65 |
57 63 64
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
| 66 |
56 65
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 67 |
|
hashfz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑁 − 𝑀 ) + 1 ) ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑁 − 𝑀 ) + 1 ) ) |
| 69 |
4
|
oveq1i |
⊢ ( 𝑁 − 𝑀 ) = ( ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) − 𝑀 ) |
| 70 |
1 58
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 71 |
70
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℂ ) |
| 72 |
71 23 21
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + ( 𝑀 − 1 ) ) − 𝑀 ) = ( ( ♯ ‘ 𝐻 ) + ( ( 𝑀 − 1 ) − 𝑀 ) ) ) |
| 73 |
69 72
|
eqtrid |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) = ( ( ♯ ‘ 𝐻 ) + ( ( 𝑀 − 1 ) − 𝑀 ) ) ) |
| 74 |
22
|
negcld |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 75 |
21 22
|
negsubd |
⊢ ( 𝜑 → ( 𝑀 + - 1 ) = ( 𝑀 − 1 ) ) |
| 76 |
75
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) = ( 𝑀 + - 1 ) ) |
| 77 |
21 74 76
|
mvrladdd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) − 𝑀 ) = - 1 ) |
| 78 |
77
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) + ( ( 𝑀 − 1 ) − 𝑀 ) ) = ( ( ♯ ‘ 𝐻 ) + - 1 ) ) |
| 79 |
73 78
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) = ( ( ♯ ‘ 𝐻 ) + - 1 ) ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) + 1 ) = ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ( 𝑁 − 𝑀 ) + 1 ) = ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) ) |
| 82 |
71 22
|
negsubd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) + - 1 ) = ( ( ♯ ‘ 𝐻 ) − 1 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) = ( ( ( ♯ ‘ 𝐻 ) − 1 ) + 1 ) ) |
| 84 |
71 22
|
npcand |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐻 ) ) |
| 85 |
83 84
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) = ( ♯ ‘ 𝐻 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ( ( ♯ ‘ 𝐻 ) + - 1 ) + 1 ) = ( ♯ ‘ 𝐻 ) ) |
| 87 |
68 81 86
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐻 = ∅ ) → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ♯ ‘ 𝐻 ) ) |
| 88 |
39 87
|
pm2.61dan |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) = ( ♯ ‘ 𝐻 ) ) |
| 89 |
88
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... ( ♯ ‘ 𝐻 ) ) ) |
| 90 |
|
isoeq4 |
⊢ ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... ( ♯ ‘ 𝐻 ) ) → ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) ↔ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 91 |
89 90
|
syl |
⊢ ( 𝜑 → ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) ↔ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 92 |
91
|
biimpd |
⊢ ( 𝜑 → ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) → ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 93 |
92
|
eximdv |
⊢ ( 𝜑 → ( ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝑀 ... 𝑁 ) ) ) , ( 𝑀 ... 𝑁 ) ) → ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) ) |
| 94 |
13 93
|
mpi |
⊢ ( 𝜑 → ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ) |
| 95 |
|
fz1iso |
⊢ ( ( < Or 𝐻 ∧ 𝐻 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) |
| 96 |
2 1 95
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) |
| 97 |
|
exdistrv |
⊢ ( ∃ ℎ ∃ 𝑔 ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ↔ ( ∃ ℎ ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) |
| 98 |
94 96 97
|
sylanbrc |
⊢ ( 𝜑 → ∃ ℎ ∃ 𝑔 ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) |
| 99 |
|
isocnv |
⊢ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) → ◡ ℎ Isom < , < ( ( 𝑀 ... 𝑁 ) , ( 1 ... ( ♯ ‘ 𝐻 ) ) ) ) |
| 100 |
99
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) → ◡ ℎ Isom < , < ( ( 𝑀 ... 𝑁 ) , ( 1 ... ( ♯ ‘ 𝐻 ) ) ) ) |
| 101 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) |
| 102 |
|
isotr |
⊢ ( ( ◡ ℎ Isom < , < ( ( 𝑀 ... 𝑁 ) , ( 1 ... ( ♯ ‘ 𝐻 ) ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) → ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 103 |
100 101 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) ) → ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 104 |
103
|
ex |
⊢ ( 𝜑 → ( ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) → ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 105 |
104
|
2eximdv |
⊢ ( 𝜑 → ( ∃ ℎ ∃ 𝑔 ( ℎ Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , ( 𝑀 ... 𝑁 ) ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐻 ) ) , 𝐻 ) ) → ∃ ℎ ∃ 𝑔 ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 106 |
98 105
|
mpd |
⊢ ( 𝜑 → ∃ ℎ ∃ 𝑔 ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 107 |
|
vex |
⊢ 𝑔 ∈ V |
| 108 |
|
vex |
⊢ ℎ ∈ V |
| 109 |
108
|
cnvex |
⊢ ◡ ℎ ∈ V |
| 110 |
107 109
|
coex |
⊢ ( 𝑔 ∘ ◡ ℎ ) ∈ V |
| 111 |
|
isoeq1 |
⊢ ( 𝑓 = ( 𝑔 ∘ ◡ ℎ ) → ( 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ↔ ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 112 |
110 111
|
spcev |
⊢ ( ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 113 |
112
|
a1i |
⊢ ( 𝜑 → ( ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 114 |
113
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ ℎ ∃ 𝑔 ( 𝑔 ∘ ◡ ℎ ) Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 115 |
106 114
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 116 |
|
ltwefz |
⊢ < We ( 𝑀 ... 𝑁 ) |
| 117 |
|
wemoiso |
⊢ ( < We ( 𝑀 ... 𝑁 ) → ∃* 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 118 |
116 117
|
mp1i |
⊢ ( 𝜑 → ∃* 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |
| 119 |
|
df-eu |
⊢ ( ∃! 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ↔ ( ∃ 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ∧ ∃* 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) ) |
| 120 |
115 118 119
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 Isom < , < ( ( 𝑀 ... 𝑁 ) , 𝐻 ) ) |