Metamath Proof Explorer


Theorem fzisoeu

Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fzisoeu.h φHFin
fzisoeu.or φ<OrH
fzisoeu.m φM
fzisoeu.4 N=H+M-1
Assertion fzisoeu φ∃!ffIsom<,<MNH

Proof

Step Hyp Ref Expression
1 fzisoeu.h φHFin
2 fzisoeu.or φ<OrH
3 fzisoeu.m φM
4 fzisoeu.4 N=H+M-1
5 fzssz MN
6 zssre
7 5 6 sstri MN
8 ltso <Or
9 soss MN<Or<OrMN
10 7 8 9 mp2 <OrMN
11 fzfi MNFin
12 fz1iso <OrMNMNFinhhIsom<,<1MNMN
13 10 11 12 mp2an hhIsom<,<1MNMN
14 fveq2 H=H=
15 hash0 =0
16 14 15 eqtrdi H=H=0
17 16 oveq1d H=H+M-1=0+M-1
18 4 17 eqtrid H=N=0+M-1
19 18 oveq2d H=MN=M0+M-1
20 19 adantl φH=MN=M0+M-1
21 3 zcnd φM
22 1cnd φ1
23 21 22 subcld φM1
24 23 addlidd φ0+M-1=M1
25 24 oveq2d φM0+M-1=MM1
26 3 zred φM
27 26 ltm1d φM1<M
28 peano2zm MM1
29 3 28 syl φM1
30 fzn MM1M1<MMM1=
31 3 29 30 syl2anc φM1<MMM1=
32 27 31 mpbid φMM1=
33 25 32 eqtrd φM0+M-1=
34 33 adantr φH=M0+M-1=
35 eqcom H==H
36 35 biimpi H==H
37 36 adantl φH==H
38 20 34 37 3eqtrd φH=MN=H
39 38 fveq2d φH=MN=H
40 22 21 pncan3d φ1+M-1=M
41 40 eqcomd φM=1+M-1
42 41 adantr φ¬H=M=1+M-1
43 1red φ¬H=1
44 neqne ¬H=H
45 44 adantl φ¬H=H
46 1 adantr φ¬H=HFin
47 hashnncl HFinHH
48 46 47 syl φ¬H=HH
49 45 48 mpbird φ¬H=H
50 49 nnred φ¬H=H
51 29 zred φM1
52 51 adantr φ¬H=M1
53 49 nnge1d φ¬H=1H
54 43 50 52 53 leadd1dd φ¬H=1+M-1H+M-1
55 54 4 breqtrrdi φ¬H=1+M-1N
56 42 55 eqbrtrd φ¬H=MN
57 3 adantr φ¬H=M
58 hashcl HFinH0
59 nn0z H0H
60 1 58 59 3syl φH
61 60 29 zaddcld φH+M-1
62 4 61 eqeltrid φN
63 62 adantr φ¬H=N
64 eluz MNNMMN
65 57 63 64 syl2anc φ¬H=NMMN
66 56 65 mpbird φ¬H=NM
67 hashfz NMMN=N-M+1
68 66 67 syl φ¬H=MN=N-M+1
69 4 oveq1i NM=H+M1-M
70 1 58 syl φH0
71 70 nn0cnd φH
72 71 23 21 addsubassd φH+M1-M=H+M1-M
73 69 72 eqtrid φNM=H+M1-M
74 22 negcld φ1
75 21 22 negsubd φM+-1=M1
76 75 eqcomd φM1=M+-1
77 21 74 76 mvrladdd φM-1-M=1
78 77 oveq2d φH+M1-M=H+-1
79 73 78 eqtrd φNM=H+-1
80 79 oveq1d φN-M+1=H+-1+1
81 80 adantr φ¬H=N-M+1=H+-1+1
82 71 22 negsubd φH+-1=H1
83 82 oveq1d φH+-1+1=H-1+1
84 71 22 npcand φH-1+1=H
85 83 84 eqtrd φH+-1+1=H
86 85 adantr φ¬H=H+-1+1=H
87 68 81 86 3eqtrd φ¬H=MN=H
88 39 87 pm2.61dan φMN=H
89 88 oveq2d φ1MN=1H
90 isoeq4 1MN=1HhIsom<,<1MNMNhIsom<,<1HMN
91 89 90 syl φhIsom<,<1MNMNhIsom<,<1HMN
92 91 biimpd φhIsom<,<1MNMNhIsom<,<1HMN
93 92 eximdv φhhIsom<,<1MNMNhhIsom<,<1HMN
94 13 93 mpi φhhIsom<,<1HMN
95 fz1iso <OrHHFinggIsom<,<1HH
96 2 1 95 syl2anc φggIsom<,<1HH
97 exdistrv hghIsom<,<1HMNgIsom<,<1HHhhIsom<,<1HMNggIsom<,<1HH
98 94 96 97 sylanbrc φhghIsom<,<1HMNgIsom<,<1HH
99 isocnv hIsom<,<1HMNh-1Isom<,<MN1H
100 99 ad2antrl φhIsom<,<1HMNgIsom<,<1HHh-1Isom<,<MN1H
101 simprr φhIsom<,<1HMNgIsom<,<1HHgIsom<,<1HH
102 isotr h-1Isom<,<MN1HgIsom<,<1HHgh-1Isom<,<MNH
103 100 101 102 syl2anc φhIsom<,<1HMNgIsom<,<1HHgh-1Isom<,<MNH
104 103 ex φhIsom<,<1HMNgIsom<,<1HHgh-1Isom<,<MNH
105 104 2eximdv φhghIsom<,<1HMNgIsom<,<1HHhggh-1Isom<,<MNH
106 98 105 mpd φhggh-1Isom<,<MNH
107 vex gV
108 vex hV
109 108 cnvex h-1V
110 107 109 coex gh-1V
111 isoeq1 f=gh-1fIsom<,<MNHgh-1Isom<,<MNH
112 110 111 spcev gh-1Isom<,<MNHffIsom<,<MNH
113 112 a1i φgh-1Isom<,<MNHffIsom<,<MNH
114 113 exlimdvv φhggh-1Isom<,<MNHffIsom<,<MNH
115 106 114 mpd φffIsom<,<MNH
116 ltwefz <WeMN
117 wemoiso <WeMN*ffIsom<,<MNH
118 116 117 mp1i φ*ffIsom<,<MNH
119 df-eu ∃!ffIsom<,<MNHffIsom<,<MNH*ffIsom<,<MNH
120 115 118 119 sylanbrc φ∃!ffIsom<,<MNH