| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzisoeu.h |  |-  ( ph -> H e. Fin ) | 
						
							| 2 |  | fzisoeu.or |  |-  ( ph -> < Or H ) | 
						
							| 3 |  | fzisoeu.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | fzisoeu.4 |  |-  N = ( ( # ` H ) + ( M - 1 ) ) | 
						
							| 5 |  | fzssz |  |-  ( M ... N ) C_ ZZ | 
						
							| 6 |  | zssre |  |-  ZZ C_ RR | 
						
							| 7 | 5 6 | sstri |  |-  ( M ... N ) C_ RR | 
						
							| 8 |  | ltso |  |-  < Or RR | 
						
							| 9 |  | soss |  |-  ( ( M ... N ) C_ RR -> ( < Or RR -> < Or ( M ... N ) ) ) | 
						
							| 10 | 7 8 9 | mp2 |  |-  < Or ( M ... N ) | 
						
							| 11 |  | fzfi |  |-  ( M ... N ) e. Fin | 
						
							| 12 |  | fz1iso |  |-  ( ( < Or ( M ... N ) /\ ( M ... N ) e. Fin ) -> E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) ) | 
						
							| 13 | 10 11 12 | mp2an |  |-  E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) | 
						
							| 14 |  | fveq2 |  |-  ( H = (/) -> ( # ` H ) = ( # ` (/) ) ) | 
						
							| 15 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( H = (/) -> ( # ` H ) = 0 ) | 
						
							| 17 | 16 | oveq1d |  |-  ( H = (/) -> ( ( # ` H ) + ( M - 1 ) ) = ( 0 + ( M - 1 ) ) ) | 
						
							| 18 | 4 17 | eqtrid |  |-  ( H = (/) -> N = ( 0 + ( M - 1 ) ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( H = (/) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ H = (/) ) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) | 
						
							| 21 | 3 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 22 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 23 | 21 22 | subcld |  |-  ( ph -> ( M - 1 ) e. CC ) | 
						
							| 24 | 23 | addlidd |  |-  ( ph -> ( 0 + ( M - 1 ) ) = ( M - 1 ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = ( M ... ( M - 1 ) ) ) | 
						
							| 26 | 3 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 27 | 26 | ltm1d |  |-  ( ph -> ( M - 1 ) < M ) | 
						
							| 28 |  | peano2zm |  |-  ( M e. ZZ -> ( M - 1 ) e. ZZ ) | 
						
							| 29 | 3 28 | syl |  |-  ( ph -> ( M - 1 ) e. ZZ ) | 
						
							| 30 |  | fzn |  |-  ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) | 
						
							| 31 | 3 29 30 | syl2anc |  |-  ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) | 
						
							| 32 | 27 31 | mpbid |  |-  ( ph -> ( M ... ( M - 1 ) ) = (/) ) | 
						
							| 33 | 25 32 | eqtrd |  |-  ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ H = (/) ) -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) | 
						
							| 35 |  | eqcom |  |-  ( H = (/) <-> (/) = H ) | 
						
							| 36 | 35 | biimpi |  |-  ( H = (/) -> (/) = H ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ H = (/) ) -> (/) = H ) | 
						
							| 38 | 20 34 37 | 3eqtrd |  |-  ( ( ph /\ H = (/) ) -> ( M ... N ) = H ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( ph /\ H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) | 
						
							| 40 | 22 21 | pncan3d |  |-  ( ph -> ( 1 + ( M - 1 ) ) = M ) | 
						
							| 41 | 40 | eqcomd |  |-  ( ph -> M = ( 1 + ( M - 1 ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> M = ( 1 + ( M - 1 ) ) ) | 
						
							| 43 |  | 1red |  |-  ( ( ph /\ -. H = (/) ) -> 1 e. RR ) | 
						
							| 44 |  | neqne |  |-  ( -. H = (/) -> H =/= (/) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ -. H = (/) ) -> H =/= (/) ) | 
						
							| 46 | 1 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> H e. Fin ) | 
						
							| 47 |  | hashnncl |  |-  ( H e. Fin -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( ph /\ -. H = (/) ) -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) | 
						
							| 49 | 45 48 | mpbird |  |-  ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. NN ) | 
						
							| 50 | 49 | nnred |  |-  ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. RR ) | 
						
							| 51 | 29 | zred |  |-  ( ph -> ( M - 1 ) e. RR ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> ( M - 1 ) e. RR ) | 
						
							| 53 | 49 | nnge1d |  |-  ( ( ph /\ -. H = (/) ) -> 1 <_ ( # ` H ) ) | 
						
							| 54 | 43 50 52 53 | leadd1dd |  |-  ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ ( ( # ` H ) + ( M - 1 ) ) ) | 
						
							| 55 | 54 4 | breqtrrdi |  |-  ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ N ) | 
						
							| 56 | 42 55 | eqbrtrd |  |-  ( ( ph /\ -. H = (/) ) -> M <_ N ) | 
						
							| 57 | 3 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> M e. ZZ ) | 
						
							| 58 |  | hashcl |  |-  ( H e. Fin -> ( # ` H ) e. NN0 ) | 
						
							| 59 |  | nn0z |  |-  ( ( # ` H ) e. NN0 -> ( # ` H ) e. ZZ ) | 
						
							| 60 | 1 58 59 | 3syl |  |-  ( ph -> ( # ` H ) e. ZZ ) | 
						
							| 61 | 60 29 | zaddcld |  |-  ( ph -> ( ( # ` H ) + ( M - 1 ) ) e. ZZ ) | 
						
							| 62 | 4 61 | eqeltrid |  |-  ( ph -> N e. ZZ ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> N e. ZZ ) | 
						
							| 64 |  | eluz |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) | 
						
							| 65 | 57 63 64 | syl2anc |  |-  ( ( ph /\ -. H = (/) ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) | 
						
							| 66 | 56 65 | mpbird |  |-  ( ( ph /\ -. H = (/) ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 67 |  | hashfz |  |-  ( N e. ( ZZ>= ` M ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) | 
						
							| 69 | 4 | oveq1i |  |-  ( N - M ) = ( ( ( # ` H ) + ( M - 1 ) ) - M ) | 
						
							| 70 | 1 58 | syl |  |-  ( ph -> ( # ` H ) e. NN0 ) | 
						
							| 71 | 70 | nn0cnd |  |-  ( ph -> ( # ` H ) e. CC ) | 
						
							| 72 | 71 23 21 | addsubassd |  |-  ( ph -> ( ( ( # ` H ) + ( M - 1 ) ) - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) | 
						
							| 73 | 69 72 | eqtrid |  |-  ( ph -> ( N - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) | 
						
							| 74 | 22 | negcld |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 75 | 21 22 | negsubd |  |-  ( ph -> ( M + -u 1 ) = ( M - 1 ) ) | 
						
							| 76 | 75 | eqcomd |  |-  ( ph -> ( M - 1 ) = ( M + -u 1 ) ) | 
						
							| 77 | 21 74 76 | mvrladdd |  |-  ( ph -> ( ( M - 1 ) - M ) = -u 1 ) | 
						
							| 78 | 77 | oveq2d |  |-  ( ph -> ( ( # ` H ) + ( ( M - 1 ) - M ) ) = ( ( # ` H ) + -u 1 ) ) | 
						
							| 79 | 73 78 | eqtrd |  |-  ( ph -> ( N - M ) = ( ( # ` H ) + -u 1 ) ) | 
						
							| 80 | 79 | oveq1d |  |-  ( ph -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) | 
						
							| 82 | 71 22 | negsubd |  |-  ( ph -> ( ( # ` H ) + -u 1 ) = ( ( # ` H ) - 1 ) ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( ( ( # ` H ) - 1 ) + 1 ) ) | 
						
							| 84 | 71 22 | npcand |  |-  ( ph -> ( ( ( # ` H ) - 1 ) + 1 ) = ( # ` H ) ) | 
						
							| 85 | 83 84 | eqtrd |  |-  ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ph /\ -. H = (/) ) -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) | 
						
							| 87 | 68 81 86 | 3eqtrd |  |-  ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) | 
						
							| 88 | 39 87 | pm2.61dan |  |-  ( ph -> ( # ` ( M ... N ) ) = ( # ` H ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ph -> ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) ) | 
						
							| 90 |  | isoeq4 |  |-  ( ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) | 
						
							| 91 | 89 90 | syl |  |-  ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) | 
						
							| 92 | 91 | biimpd |  |-  ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) | 
						
							| 93 | 92 | eximdv |  |-  ( ph -> ( E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) | 
						
							| 94 | 13 93 | mpi |  |-  ( ph -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) | 
						
							| 95 |  | fz1iso |  |-  ( ( < Or H /\ H e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) | 
						
							| 96 | 2 1 95 | syl2anc |  |-  ( ph -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) | 
						
							| 97 |  | exdistrv |  |-  ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) <-> ( E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) | 
						
							| 98 | 94 96 97 | sylanbrc |  |-  ( ph -> E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) | 
						
							| 99 |  | isocnv |  |-  ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) | 
						
							| 100 | 99 | ad2antrl |  |-  ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) | 
						
							| 101 |  | simprr |  |-  ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) | 
						
							| 102 |  | isotr |  |-  ( ( `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 103 | 100 101 102 | syl2anc |  |-  ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 104 | 103 | ex |  |-  ( ph -> ( ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) | 
						
							| 105 | 104 | 2eximdv |  |-  ( ph -> ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) | 
						
							| 106 | 98 105 | mpd |  |-  ( ph -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 107 |  | vex |  |-  g e. _V | 
						
							| 108 |  | vex |  |-  h e. _V | 
						
							| 109 | 108 | cnvex |  |-  `' h e. _V | 
						
							| 110 | 107 109 | coex |  |-  ( g o. `' h ) e. _V | 
						
							| 111 |  | isoeq1 |  |-  ( f = ( g o. `' h ) -> ( f Isom < , < ( ( M ... N ) , H ) <-> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) | 
						
							| 112 | 110 111 | spcev |  |-  ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 113 | 112 | a1i |  |-  ( ph -> ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) | 
						
							| 114 | 113 | exlimdvv |  |-  ( ph -> ( E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) | 
						
							| 115 | 106 114 | mpd |  |-  ( ph -> E. f f Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 116 |  | ltwefz |  |-  < We ( M ... N ) | 
						
							| 117 |  | wemoiso |  |-  ( < We ( M ... N ) -> E* f f Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 118 | 116 117 | mp1i |  |-  ( ph -> E* f f Isom < , < ( ( M ... N ) , H ) ) | 
						
							| 119 |  | df-eu |  |-  ( E! f f Isom < , < ( ( M ... N ) , H ) <-> ( E. f f Isom < , < ( ( M ... N ) , H ) /\ E* f f Isom < , < ( ( M ... N ) , H ) ) ) | 
						
							| 120 | 115 118 119 | sylanbrc |  |-  ( ph -> E! f f Isom < , < ( ( M ... N ) , H ) ) |