| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lubid.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lubid.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
lubid.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
| 4 |
|
lubid.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
| 5 |
|
lubid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
biid |
⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) |
| 7 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) |
| 9 |
1 2 3 6 4 8
|
lubval |
⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) ) |
| 10 |
1 2 3 4 5
|
lublecllem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
| 11 |
5 10
|
riota5 |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) = 𝑋 ) |
| 12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |