Metamath Proof Explorer


Theorem lubid

Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubid.b B=BaseK
lubid.l ˙=K
lubid.u U=lubK
lubid.k φKPoset
lubid.x φXB
Assertion lubid φUyB|y˙X=X

Proof

Step Hyp Ref Expression
1 lubid.b B=BaseK
2 lubid.l ˙=K
3 lubid.u U=lubK
4 lubid.k φKPoset
5 lubid.x φXB
6 biid zyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w
7 ssrab2 yB|y˙XB
8 7 a1i φyB|y˙XB
9 1 2 3 6 4 8 lubval φUyB|y˙X=ιxB|zyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w
10 1 2 3 4 5 lublecllem φxBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wx=X
11 5 10 riota5 φιxB|zyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w=X
12 9 11 eqtrd φUyB|y˙X=X