Metamath Proof Explorer


Theorem lubval

Description: Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying S e. dom U ) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)

Ref Expression
Hypotheses lubval.b B=BaseK
lubval.l ˙=K
lubval.u U=lubK
lubval.p ψySy˙xzBySy˙zx˙z
lubval.k φKV
lubval.s φSB
Assertion lubval φUS=ιxB|ψ

Proof

Step Hyp Ref Expression
1 lubval.b B=BaseK
2 lubval.l ˙=K
3 lubval.u U=lubK
4 lubval.p ψySy˙xzBySy˙zx˙z
5 lubval.k φKV
6 lubval.s φSB
7 biid ysy˙xzBysy˙zx˙zysy˙xzBysy˙zx˙z
8 5 adantr φSdomUKV
9 1 2 3 7 8 lubfval φSdomUU=s𝒫BιxB|ysy˙xzBysy˙zx˙zs|∃!xBysy˙xzBysy˙zx˙z
10 9 fveq1d φSdomUUS=s𝒫BιxB|ysy˙xzBysy˙zx˙zs|∃!xBysy˙xzBysy˙zx˙zS
11 simpr φSdomUSdomU
12 1 2 3 4 8 11 lubeu φSdomU∃!xBψ
13 raleq s=Sysy˙xySy˙x
14 raleq s=Sysy˙zySy˙z
15 14 imbi1d s=Sysy˙zx˙zySy˙zx˙z
16 15 ralbidv s=SzBysy˙zx˙zzBySy˙zx˙z
17 13 16 anbi12d s=Sysy˙xzBysy˙zx˙zySy˙xzBySy˙zx˙z
18 17 4 bitr4di s=Sysy˙xzBysy˙zx˙zψ
19 18 reubidv s=S∃!xBysy˙xzBysy˙zx˙z∃!xBψ
20 11 12 19 elabd φSdomUSs|∃!xBysy˙xzBysy˙zx˙z
21 20 fvresd φSdomUs𝒫BιxB|ysy˙xzBysy˙zx˙zs|∃!xBysy˙xzBysy˙zx˙zS=s𝒫BιxB|ysy˙xzBysy˙zx˙zS
22 6 adantr φSdomUSB
23 1 fvexi BV
24 23 elpw2 S𝒫BSB
25 22 24 sylibr φSdomUS𝒫B
26 18 riotabidv s=SιxB|ysy˙xzBysy˙zx˙z=ιxB|ψ
27 eqid s𝒫BιxB|ysy˙xzBysy˙zx˙z=s𝒫BιxB|ysy˙xzBysy˙zx˙z
28 riotaex ιxB|ψV
29 26 27 28 fvmpt S𝒫Bs𝒫BιxB|ysy˙xzBysy˙zx˙zS=ιxB|ψ
30 25 29 syl φSdomUs𝒫BιxB|ysy˙xzBysy˙zx˙zS=ιxB|ψ
31 10 21 30 3eqtrd φSdomUUS=ιxB|ψ
32 ndmfv ¬SdomUUS=
33 32 adantl φ¬SdomUUS=
34 1 2 3 4 5 lubeldm φSdomUSB∃!xBψ
35 34 biimprd φSB∃!xBψSdomU
36 6 35 mpand φ∃!xBψSdomU
37 36 con3dimp φ¬SdomU¬∃!xBψ
38 riotaund ¬∃!xBψιxB|ψ=
39 37 38 syl φ¬SdomUιxB|ψ=
40 33 39 eqtr4d φ¬SdomUUS=ιxB|ψ
41 31 40 pm2.61dan φUS=ιxB|ψ