Metamath Proof Explorer


Theorem glbfval

Description: Value of the greatest lower function of a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 6-Sep-2018)

Ref Expression
Hypotheses glbfval.b B=BaseK
glbfval.l ˙=K
glbfval.g G=glbK
glbfval.p ψysx˙yzBysz˙yz˙x
glbfval.k φKV
Assertion glbfval φG=s𝒫BιxB|ψs|∃!xBψ

Proof

Step Hyp Ref Expression
1 glbfval.b B=BaseK
2 glbfval.l ˙=K
3 glbfval.g G=glbK
4 glbfval.p ψysx˙yzBysz˙yz˙x
5 glbfval.k φKV
6 elex KVKV
7 fveq2 p=KBasep=BaseK
8 7 1 eqtr4di p=KBasep=B
9 8 pweqd p=K𝒫Basep=𝒫B
10 fveq2 p=Kp=K
11 10 2 eqtr4di p=Kp=˙
12 11 breqd p=Kxpyx˙y
13 12 ralbidv p=Kysxpyysx˙y
14 11 breqd p=Kzpyz˙y
15 14 ralbidv p=Kyszpyysz˙y
16 11 breqd p=Kzpxz˙x
17 15 16 imbi12d p=Kyszpyzpxysz˙yz˙x
18 8 17 raleqbidv p=KzBasepyszpyzpxzBysz˙yz˙x
19 13 18 anbi12d p=KysxpyzBasepyszpyzpxysx˙yzBysz˙yz˙x
20 8 19 riotaeqbidv p=KιxBasep|ysxpyzBasepyszpyzpx=ιxB|ysx˙yzBysz˙yz˙x
21 9 20 mpteq12dv p=Ks𝒫BasepιxBasep|ysxpyzBasepyszpyzpx=s𝒫BιxB|ysx˙yzBysz˙yz˙x
22 19 reubidv p=K∃!xBasepysxpyzBasepyszpyzpx∃!xBasepysx˙yzBysz˙yz˙x
23 reueq1 Basep=B∃!xBasepysx˙yzBysz˙yz˙x∃!xBysx˙yzBysz˙yz˙x
24 8 23 syl p=K∃!xBasepysx˙yzBysz˙yz˙x∃!xBysx˙yzBysz˙yz˙x
25 22 24 bitrd p=K∃!xBasepysxpyzBasepyszpyzpx∃!xBysx˙yzBysz˙yz˙x
26 25 abbidv p=Ks|∃!xBasepysxpyzBasepyszpyzpx=s|∃!xBysx˙yzBysz˙yz˙x
27 21 26 reseq12d p=Ks𝒫BasepιxBasep|ysxpyzBasepyszpyzpxs|∃!xBasepysxpyzBasepyszpyzpx=s𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙x
28 df-glb glb=pVs𝒫BasepιxBasep|ysxpyzBasepyszpyzpxs|∃!xBasepysxpyzBasepyszpyzpx
29 1 fvexi BV
30 29 pwex 𝒫BV
31 30 mptex s𝒫BιxB|ysx˙yzBysz˙yz˙xV
32 31 resex s𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙xV
33 27 28 32 fvmpt KVglbK=s𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙x
34 4 a1i xBψysx˙yzBysz˙yz˙x
35 34 riotabiia ιxB|ψ=ιxB|ysx˙yzBysz˙yz˙x
36 35 mpteq2i s𝒫BιxB|ψ=s𝒫BιxB|ysx˙yzBysz˙yz˙x
37 4 reubii ∃!xBψ∃!xBysx˙yzBysz˙yz˙x
38 37 abbii s|∃!xBψ=s|∃!xBysx˙yzBysz˙yz˙x
39 36 38 reseq12i s𝒫BιxB|ψs|∃!xBψ=s𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙x
40 33 3 39 3eqtr4g KVG=s𝒫BιxB|ψs|∃!xBψ
41 5 6 40 3syl φG=s𝒫BιxB|ψs|∃!xBψ