Metamath Proof Explorer


Theorem glbdm

Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018)

Ref Expression
Hypotheses glbfval.b B=BaseK
glbfval.l ˙=K
glbfval.g G=glbK
glbfval.p ψysx˙yzBysz˙yz˙x
glbfval.k φKV
Assertion glbdm φdomG=s𝒫B|∃!xBψ

Proof

Step Hyp Ref Expression
1 glbfval.b B=BaseK
2 glbfval.l ˙=K
3 glbfval.g G=glbK
4 glbfval.p ψysx˙yzBysz˙yz˙x
5 glbfval.k φKV
6 1 2 3 4 5 glbfval φG=s𝒫BιxB|ψs|∃!xBψ
7 6 dmeqd φdomG=doms𝒫BιxB|ψs|∃!xBψ
8 riotaex ιxB|ψV
9 eqid s𝒫BιxB|ψ=s𝒫BιxB|ψ
10 8 9 dmmpti doms𝒫BιxB|ψ=𝒫B
11 10 ineq2i s|∃!xBψdoms𝒫BιxB|ψ=s|∃!xBψ𝒫B
12 dmres doms𝒫BιxB|ψs|∃!xBψ=s|∃!xBψdoms𝒫BιxB|ψ
13 dfrab2 s𝒫B|∃!xBψ=s|∃!xBψ𝒫B
14 11 12 13 3eqtr4i doms𝒫BιxB|ψs|∃!xBψ=s𝒫B|∃!xBψ
15 7 14 eqtrdi φdomG=s𝒫B|∃!xBψ