Metamath Proof Explorer


Theorem glbfun

Description: The GLB is a function. (Contributed by NM, 9-Sep-2018)

Ref Expression
Hypothesis glbfun.g G=glbK
Assertion glbfun FunG

Proof

Step Hyp Ref Expression
1 glbfun.g G=glbK
2 funmpt Funs𝒫BaseKιxBaseK|ysxKyzBaseKyszKyzKx
3 funres Funs𝒫BaseKιxBaseK|ysxKyzBaseKyszKyzKxFuns𝒫BaseKιxBaseK|ysxKyzBaseKyszKyzKxs|∃!xBaseKysxKyzBaseKyszKyzKx
4 2 3 ax-mp Funs𝒫BaseKιxBaseK|ysxKyzBaseKyszKyzKxs|∃!xBaseKysxKyzBaseKyszKyzKx
5 eqid BaseK=BaseK
6 eqid K=K
7 biid ysxKyzBaseKyszKyzKxysxKyzBaseKyszKyzKx
8 id KVKV
9 5 6 1 7 8 glbfval KVG=s𝒫BaseKιxBaseK|ysxKyzBaseKyszKyzKxs|∃!xBaseKysxKyzBaseKyszKyzKx
10 9 funeqd KVFunGFuns𝒫BaseKιxBaseK|ysxKyzBaseKyszKyzKxs|∃!xBaseKysxKyzBaseKyszKyzKx
11 4 10 mpbiri KVFunG
12 fun0 Fun
13 fvprc ¬KVglbK=
14 1 13 eqtrid ¬KVG=
15 14 funeqd ¬KVFunGFun
16 12 15 mpbiri ¬KVFunG
17 11 16 pm2.61i FunG