Metamath Proof Explorer


Theorem glbeldm

Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbeldm.b B=BaseK
glbeldm.l ˙=K
glbeldm.g G=glbK
glbeldm.p ψySx˙yzBySz˙yz˙x
glbeldm.k φKV
Assertion glbeldm φSdomGSB∃!xBψ

Proof

Step Hyp Ref Expression
1 glbeldm.b B=BaseK
2 glbeldm.l ˙=K
3 glbeldm.g G=glbK
4 glbeldm.p ψySx˙yzBySz˙yz˙x
5 glbeldm.k φKV
6 biid ysx˙yzBysz˙yz˙xysx˙yzBysz˙yz˙x
7 1 2 3 6 5 glbdm φdomG=s𝒫B|∃!xBysx˙yzBysz˙yz˙x
8 7 eleq2d φSdomGSs𝒫B|∃!xBysx˙yzBysz˙yz˙x
9 raleq s=Sysx˙yySx˙y
10 raleq s=Sysz˙yySz˙y
11 10 imbi1d s=Sysz˙yz˙xySz˙yz˙x
12 11 ralbidv s=SzBysz˙yz˙xzBySz˙yz˙x
13 9 12 anbi12d s=Sysx˙yzBysz˙yz˙xySx˙yzBySz˙yz˙x
14 13 reubidv s=S∃!xBysx˙yzBysz˙yz˙x∃!xBySx˙yzBySz˙yz˙x
15 4 reubii ∃!xBψ∃!xBySx˙yzBySz˙yz˙x
16 14 15 bitr4di s=S∃!xBysx˙yzBysz˙yz˙x∃!xBψ
17 16 elrab Ss𝒫B|∃!xBysx˙yzBysz˙yz˙xS𝒫B∃!xBψ
18 1 fvexi BV
19 18 elpw2 S𝒫BSB
20 19 anbi1i S𝒫B∃!xBψSB∃!xBψ
21 17 20 bitri Ss𝒫B|∃!xBysx˙yzBysz˙yz˙xSB∃!xBψ
22 8 21 bitrdi φSdomGSB∃!xBψ